首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3450篇
  免费   215篇
  国内免费   1篇
  2023年   14篇
  2022年   37篇
  2021年   66篇
  2020年   48篇
  2019年   53篇
  2018年   77篇
  2017年   72篇
  2016年   101篇
  2015年   151篇
  2014年   160篇
  2013年   266篇
  2012年   274篇
  2011年   272篇
  2010年   179篇
  2009年   145篇
  2008年   258篇
  2007年   215篇
  2006年   230篇
  2005年   208篇
  2004年   173篇
  2003年   164篇
  2002年   122篇
  2001年   20篇
  2000年   26篇
  1999年   39篇
  1998年   18篇
  1997年   28篇
  1996年   20篇
  1995年   20篇
  1994年   7篇
  1993年   11篇
  1992年   31篇
  1991年   12篇
  1990年   20篇
  1989年   19篇
  1988年   15篇
  1987年   7篇
  1986年   11篇
  1985年   11篇
  1984年   4篇
  1983年   5篇
  1982年   7篇
  1981年   6篇
  1979年   8篇
  1978年   3篇
  1977年   7篇
  1976年   5篇
  1975年   4篇
  1972年   3篇
  1961年   3篇
排序方式: 共有3666条查询结果,搜索用时 31 毫秒
991.
Secretory phospholipase A(2) (sPLA(2)) produces lipids that stimulate polymorphonuclear neutrophils (PMNs). With the discovery of sPLA(2) receptors (sPLA(2)-R), we hypothesize that sPLA(2) stimulates PMNs through a receptor. Scatchard analysis was used to determine the presence of a sPLA(2) ligand. Lysates were probed with an antibody to the M-type sPLA(2)-R, and the immunoreactivity was localized. PMNs were treated with active and inactive (+EGTA) sPLA(2) (1-100 units of enzyme activity/ml, types IA, IB, and IIA), and elastase release and PMN adhesion were measured. PMNs incubated with inactive, FITC-linked sPLA(2)-IB, but not sPLA(2)-IA, demonstrated the presence of a sPLA(2)-R with saturation at 2.77 fM and a K(d) of 167 pM. sPLA(2)-R immunoreactivity was present at 185 kDa and localized to the membrane. Inactive sPLA(2)-IB activated p38 MAPK, and p38 MAPK inhibition attenuated elastase release. Active sPLA(2)-IA caused elastase release, but inactive type IA did not. sPLA(2)-IB stimulated elastase release independent of activity; inactive sPLA(2)-IIA partially stimulated PMNs. sPLA(2)-IB and sPLA(2)-IIA caused PMN adhesion. We conclude that PMNs contain a membrane M-type sPLA(2)-R that activates p38 MAPK.  相似文献   
992.
The crystal structure of a microbial transglutaminase from Streptoverticillium mobaraense has been determined at 2.4 A resolution. The protein folds into a plate-like shape, and has one deep cleft at the edge of the molecule. Its overall structure is completely different from that of the factor XIII-like transglutaminase, which possesses a cysteine protease-like catalytic triad. The catalytic residue, Cys(64), exists at the bottom of the cleft. Asp(255) resides at the position nearest to Cys(64) and is also adjacent to His(274). Interestingly, Cys(64), Asp(255), and His(274) superimpose well on the catalytic triad "Cys-His-Asp" of the factor XIII-like transglutaminase, in this order. The secondary structure frameworks around these residues are also similar to each other. These results imply that both transglutaminases are related by convergent evolution; however, the microbial transglutaminase has developed a novel catalytic mechanism specialized for the cross-linking reaction. The structure accounts well for the catalytic mechanism, in which Asp(255) is considered to be enzymatically essential, as well as for the causes of the higher reaction rate, the broader substrate specificity, and the lower deamidation activity of this enzyme.  相似文献   
993.
Saccharomyces cerevisiae Rrs1p is a nuclear protein that is essential for the maturation of 25 S rRNA and the 60 S ribosomal subunit assembly. In two-hybrid screening, using RRS1 as bait, we have cloned YKR081c/RPF2. Rpf2p is essential for growth and is mainly localized in the nucleolus. The amino acid sequence of Rpf2p is highly conserved in eukaryotes from yeast to human. Similar to Rrs1p, Rpf2p shows physical interaction with ribosomal protein L11 and appears to associate with preribosomal subunits fairly tightly. Northern, methionine pulse-chase, and sucrose density gradient ultracentrifugation analyses reveal that the depletion of Rpf2p results in a delayed processing of pre-rRNA, a decrease of mature 25 S rRNA, and a shortage of 60 S subunits. An analysis of processing intermediates by primer extension shows that the Rpf2p depletion leads to an accumulation of 27 SB pre-rRNA, suggesting that Rpf2p is required for the processing of 27 SB into 25 S rRNA.  相似文献   
994.
995.
An idealized CFD model and a realistic one were used to investigate the effect of the 3-D distortion of the aortic arch on the blood flow and its pathophysiological significance with respect to the pathogenesis of the aortic aneurysm. From the results of the flow simulations, the distortion of the centerline of the pipe was shown to affect significantly the flow structure. A right-handed vortex at the descending arch, and a left-handed one at the end of the arch tended to develop in the realistic model. But the secondary flow did not become a single helix. The top of the arch was the region where complex spatial and temporal WSS distributed. It was also observed that the direction of WSS had a significant circumferential component at the top of the arch.  相似文献   
996.
The purpose of this study is to evaluate local levels of interleukin-1 beta (IL-1 beta), -4 (IL-4), -6 (IL-6), and tumour necrosis factor-alpha (TNF-alpha), in a model of murine osteomyelitis due to Staphylococcus aureus.Cytokine levels in supernatants derived from bone homogenates were determined by enzyme-linked immunosorbent assay, for 28 days following the direct implantation of murine tibiae with S.aureus. Levels of IL-1 beta and IL-6 in infected bone were elevated in the early post-infection period and then decreased. In contrast, TNF-alpha levels remained elevated 3 to 28 days post-infection, while IL-4 levels were elevated late in the course of infection. The histopathology of infected bone showed predominant infiltration of inflammatory cells and bone resorption 3 to 7 days after infection, and bone resorption and adjacent areas of formation 14 to 28 days after infection. These results suggest that the elevated IL-1 beta and IL-6 levels induced by infection may be related to bone damage mainly in the early phase of infection, and that TNF-alpha and IL-4 may at least in part be associated with histopathological changes, including both bone resorption and formation in the later phase of this osteomyelitis model.  相似文献   
997.
Background. VacA is an important pathogenetic factor produced by Helicobacter pylori. VacA has often been detected in supernatants of liquid cultures or lysates of whole bacterial cells. However, no studies have ever tried to assay VacA produced in the human stomach. We applied a very sensitive and simple method, bead‐ELISA, to detect VacA in gastric juice. Materials and Methods. Forty‐eight H. pylori‐positive patients (16 nonulcer dyspepsia, 16 gastric ulcer, and 16 duodenal ulcer) and four H. pylori‐negative nonulcer dyspepsia patients had endoscopy performed and gastric juice were aspirated. Polystyrene beads coated with the antibody to VacA, were used in this bead‐ELISA method. The nucleotide sequences of vacA in the signal and middle regions were investigated. Results. Of the 48 samples that were positive for H. pylori, 21 [43.8%] were found to be VacA positive in gastric juice. The average and maximum concentrations of detected VacA in gastric juice were 143.2 ± 216.5 and 840 pg/ml, respectively. The average density of VacA from gastric ulcer patients (227.5 ± 276.7 pg/ml) was higher than that found in nonulcer dyspepsia (51.8 ± 39.8 pg/ml) and duodenal ulcer (49.2 ± 21.5 pg/ml) patients. There was no relationship between VacA in gastric juice and vacA genotype. Conclusions. VacA in gastric juice could be directly detected by bead‐ELISA. In this study, the diversity of disease outcome was associated with not the quality but the quantity of VacA. Therefore, not only the quality but also the quantity of VacA is important etiological factors in the pathogenesis of mucosal damage.  相似文献   
998.
DNA damage response pathway in radioadaptive response   总被引:16,自引:0,他引:16  
Radioadaptive response is a biological defense mechanism in which low-dose ionizing irradiation elicits cellular resistance to the genotoxic effects of subsequent irradiation. However, its molecular mechanism remains largely unknown. We previously demonstrated that the dose recognition and adaptive response could be mediated by a feedback signaling pathway involving protein kinase C (PKC), p38 mitogen activated protein kinase (p38MAPK) and phospholipase C (PLC). Further, to elucidate the downstream effector pathway, we studied the X-ray-induced adaptive response in cultured mouse and human cells with different genetic background relevant to the DNA damage response pathway, such as deficiencies in TP53, DNA-PKcs, ATM and FANCA genes. The results showed that p53 protein played a key role in the adaptive response while DNA-PKcs, ATM and FANCA were not responsible. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), mimicked the priming irradiation in that the inhibitor alone rendered the cells resistant against the induction of chromosome aberrations and apoptosis by the subsequent X-ray irradiation. The adaptive response, whether it was afforded by low-dose X-rays or wortmannin, occurred in parallel with the reduction of apoptotic cell death by challenging doses. The inhibitor of p38MAPK which blocks the adaptive response did not suppress apoptosis. These observations indicate that the adaptive response and apoptotic cell death constitute a complementary defense system via life-or-death decisions. The p53 has a pivotal role in channeling the radiation-induced DNA double-strand breaks (DSBs) into an adaptive legitimate repair pathway, where the signals are integrated into p53 by a circuitous PKC-p38MAPK-PLC damage sensing pathway, and hence turning off the signals to an alternative pathway to illegitimate repair and apoptosis. A possible molecular mechanism of adaptive response to low-dose ionizing irradiation has been discussed in relation to the repair of DSBs and implicated to the current controversial observations on the expression of adaptive response.  相似文献   
999.
In an effort to clarify the responses of a wide range of plant cells to freezing, we examined the responses to freezing of the cells of chilling-sensitive and chilling-resistant tropical and subtropical plants. Among the cells of the plants that we examined, those of African violet ( Saintpaulia grotei Engl.) leaves were most chilling-sensitive, those of hypocotyls in mungbean [ Vigna radiata (L.) R. Wilcz.] seedlings were moderately chilling-sensitive, and those of orchid [ Paphiopedilum insigne (Wallich ex Lindl.) Pfitz.] leaves were chilling-resistant, when all were chilled at -2 degrees C. By contrast, all these plant cells were freezing-sensitive and suffered extensive damage when they were frozen at -2 degrees C. Cryo-scanning electron microscopy (Cryo-SEM) confirmed that, upon chilling at -2 degrees C, both chilling-sensitive and chilling-resistant plant cells were supercooled. Upon freezing at -2 degrees C, by contrast, intracellular freezing occurred in Saintpaulia leaf cells, frost plasmolysis followed by intracellular freezing occurred in mungbean seedling cells, and extracellular freezing (cytorrhysis) occurred in orchid leaf cells. We postulate that chilling-related destabilization of membranes might result in the loss of the ability of the plasma membrane to act as a barrier against the propagation of extracellular ice in chilling-sensitive plant cells. We also examined the role of cell walls in the response to freezing using cells in which the plasma membrane had been disrupted by repeated freezing and thawing. In chilling-sensitive Saintpaulia and mungbean cells, the cells with a disrupted plasma membrane responded to freezing at -2 degrees C by intracellular freezing. By contrast, in chilling-resistant orchid cells, as well as in other cells of chilling-resistant and freezing-resistant plant tissues, including leaves of orchard grass ( Dactylis glomerata L.), leaves of Arabidopsis thaliana (L.) Heynh. and cortical tissues of mulberry ( Morus bombycis Koids.), cells with a disrupted plasma membrane responded to freezing by extracellular freezing. Our results indicate that, in the chilling-sensitive plants cells that we examined, not only the plasma membrane but also the cell wall lacked the ability to serve as a barrier against the propagation of extracellular ice, whereas in the chilling-resistant plant cells that we examined, not only the plasma membrane but also the cell wall acted as a barrier against the propagation of extracellular ice. It appears, therefore, that not only the plasma membrane but also the cell wall greatly influences the freezing behavior of plant cells.  相似文献   
1000.
We investigated the reason for the absence of the long-wavelength PSI Chl a fluorescence at -196 degrees C in the cyanobacterium Gloeobacter violaceus using two methods: p-nitrothiophenol (p-NTP) treatment and time-resolved fluorescence spectra. The p-NTP treatment showed that PSII Chl a fluorescence was specifically affected in a manner similar to that for Synechocystis sp. PCC 6803 and spinach chloroplasts, although there were no components modified by the p-NTP treatment, indicating an absence of the long-wavelength PSI Chl a fluorescence. The time-resolved fluorescence spectra with a time resolution of 1.3 ps and spectral resolution of 1.0 nm gave no indication of the presence of the long-wavelength PSI fluorescence in the wavelength region between 700 nm and 760 nm, indicating that a very fast energy transfer among Chl a molecules could not account for the absence of the long-wavelength PSI fluorescence. From these data, it seems that the absence of the long-wavelength PSI fluorescence is due to a lack of the formation of a component responsible for the fluorescence at -196 degrees C, which may originate from a difference in the amino acid sequence. We discuss the significance of this phenomenon and interpret our findings in terms of the evolution of cyanobacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号