首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   3篇
  2022年   1篇
  2021年   2篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   8篇
  2013年   6篇
  2012年   7篇
  2011年   7篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1981年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
31.
Transforming growth factor betas (TGF-b?s) are the defining members of a superfamily of small proteins that are involved in the regulation of development and morphogenesis in a wide array of systems. Previous studies have demonstrated that TGF-b?s both inhibit and, under specialized conditions, induce the differentiation of myoblasts. TGF-b?s have been shown to be secreted by mouse C2C12 myoblast cultures undergoing differentiation. Insulin-like growth factors (IGFs) have also been shown to be secreted by myoblasts and to induce myogenesis. This study characterizes the effects of IGF treatment on the expression and secretion of TGF-b?s in the IGF-sensitive L6A1 myoblast line. IGF downregulated the expression of TGF-b?3 in a concentration-dependent manner at 24 and 48 hours; TGF-b?1 was not sensitive to IGF treatment at 24 hours but was downregulated by IGFs at 48 hours. This downregulation was mediated by the type I IGF receptor and modulated by IGF binding proteins secreted by the myoblasts. Some reexpression of TGF-b?1 and TGF-b?3 mRNAs was observed after extensive morphological differentiation had occurred. These results support the hypothesis that IGFs act through the IGF type I receptor as part of a concerted mechanism to modulate expression of the TGF-b? genes, as part of a coordinated set of changes associated with terminal myogenic differentiation. © 1995 Wiley-Liss, Inc.  相似文献   
32.

Aims

Trimethylamine-N-oxide (TMAO) is produced in host liver from trimethylamine (TMA). TMAO and TMA share common dietary quaternary amine precursors, carnitine and choline, which are metabolized by the intestinal microbiota. TMAO recently has been linked to the pathogenesis of atherosclerosis and severity of cardiovascular diseases. We examined the effects of anti-atherosclerotic compound meldonium, an aza-analogue of carnitine bioprecursor gamma-butyrobetaine (GBB), on the availability of TMA and TMAO.

Main methods

Wistar rats received L-carnitine, GBB or choline alone or in combination with meldonium. Plasma, urine and rat small intestine perfusate samples were assayed for L-carnitine, GBB, choline and TMAO using UPLC-MS/MS. Meldonium effects on TMA production by intestinal bacteria from L-carnitine and choline were tested.

Key findings

Treatment with meldonium significantly decreased intestinal microbiota-dependent production of TMA/TMAO from L-carnitine, but not from choline. 24 hours after the administration of meldonium, the urinary excretion of TMAO was 3.6 times lower in the combination group than in the L-carnitine-alone group. In addition, the administration of meldonium together with L-carnitine significantly increased GBB concentration in blood plasma and in isolated rat small intestine perfusate. Meldonium did not influence bacterial growth and bacterial uptake of L-carnitine, but TMA production by the intestinal microbiota bacteria K. pneumoniae was significantly decreased.

Significance

We have shown for the first time that TMA/TMAO production from quaternary amines could be decreased by targeting bacterial TMA-production. In addition, the production of pro-atherogenic TMAO can be suppressed by shifting the microbial degradation pattern of supplemental/dietary quaternary amines.  相似文献   
33.
34.
20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P450 metabolite of arachidonic acid that that contributes to infarct size following focal cerebral ischemia. However, little is known about the role of 20-HETE in global cerebral ischemia or neonatal hypoxia-ischemia (H-I). The present study examined the effects of blockade of the synthesis of 20-HETE with N-hydroxy-N'-(4-n-butyl-2-methylphenyl) formamidine (HET0016) in neonatal piglets after H-I to determine if it protects highly vulnerable striatal neurons. Administration of HET0016 after H-I improved early neurological recovery and protected neurons in putamen after 4 days of recovery. HET0016 had no significant effect on cerebral blood flow. cytochrome P450 4A immunoreactivity was detected in putamen neurons, and direct infusion of 20-HETE in the putamen increased phosphorylation of Na(+), K(+) -ATPase and NMDA receptor NR1 subunit selectively at protein kinase C-sensitive sites but not at protein kinase A-sensitive sites. HET0016 selectively inhibited the H-I induced phosphorylation at these same sites at 3 h of recovery and improved Na(+), K(+) -ATPase activity. At 3 h, HET0016 also suppressed H-I induced extracellular signal-regulated kinase 1/2 activation and protein markers of nitrosative and oxidative stress. Thus, 20-HETE can exert direct effects on key proteins involved in neuronal excitotoxicity in vivo and contributes to neurodegeneration after global cerebral ischemia in immature brain.  相似文献   
35.
36.
37.
DNA gyrase is unique among type II topoisomerases in that its DNA supercoiling activity is unidirectional. The C-terminal domain of the gyrase A subunit (GyrA-CTD) is required for this supercoiling bias. We report here the x-ray structure of the Escherichia coli GyrA-CTD (Protein Data Bank code 1ZI0). The E. coli GyrA-CTD adopts a circular-shaped beta-pinwheel fold first seen in the Borrelia burgdorferi GyrA-CTD. However, whereas the B. burgdorferi GyrA-CTD is flat, the E. coli GyrA-CTD is spiral. DNA relaxation assays reveal that the E. coli GyrA-CTD wraps DNA inducing substantial (+) superhelicity, while the B. burgdorferi GyrA-CTD introduces a more modest (+) superhelicity. The observation of a superhelical spiral in the present structure and that of the Bacillus stearothermophilus ParC-CTD structure suggests unexpected similarities in substrate selectivity between gyrase and Topo IV enzymes. We propose a model wherein the right-handed ((+) solenoidal) wrapping of DNA around the E. coli GyrA-CTD enforces unidirectional (-) DNA supercoiling.  相似文献   
38.
Mirk/Dyrk1B mediates survival during the differentiation of C2C12 myoblasts   总被引:3,自引:0,他引:3  
The kinase Mirk/dyrk1B is essential for the differentiation of C2C12 myoblasts. Mirk reinforces the G0/G1 arrest state in which differentiation occurs by directly phosphorylating and stabilizing p27(Kip1) and destabilizing cyclin D1. We now demonstrate that Mirk is anti-apoptotic in myoblasts. Knockdown of endogenous Mirk by RNA interference activated caspase 3 and decreased myoblast survival by 75%, whereas transient overexpression of Mirk increased cell survival. Mirk exerts its anti-apoptotic effects during muscle differentiation at least in part through effects on the cell cycle inhibitor and pro-survival molecule p21(Cip1). Overexpression and RNA interference experiments demonstrated that Mirk phosphorylates p21 within its nuclear localization domain at Ser-153 causing a portion of the typically nuclear p21 to localize in the cytoplasm. Phosphomimetic GFP-p21-S153D was pancellular in both cycling C2C12 myoblasts and NIH3T3 cells. Endogenous Mirk in myotubes and overexpressed Mirk in NIH3T3 cells were able to cause the pancellular localization of wild-type GFP-p21 but not the nonphosphorylatable mutant GFP-p21-S153A. Translocation to the cytoplasm enables p21 to block apoptosis through inhibitory interaction with pro-apoptotic molecules. Phosphomimetic p21-S153D was more effective than wild-type p21 in blocking the activation of caspase 3. Transient expression of p21-S153D also increased myoblast viability in colony forming assays, whereas the p21-S153A mutant had no effect. This Mirk-dependent change in p21 intracellular localization is a natural part of myoblast differentiation. Endogenous p21 localized exclusively to the nuclei of proliferating myoblasts but was also found in the cytoplasm of post-mitotic multinucleated myotubes and adult human skeletal myofibers.  相似文献   
39.
Soybean transformation is limited by the lack of multiple efficient selectable marker systems. Biolistic transformation of somatic proliferative embryogenic cultures, one of the commonly used soybean transformation methods, relies largely on hygromycin phosphotransferase II (hptII) selection. The purpose of the present study was to establish another efficient selectable marker system to facilitate multiple gene transformations of soybean. We tested neomycin phosphotransferase II (nptII) that has been used successfully in cotyledonary node transformation, but with limited success in transformation of embryogenic cultures. Transgenic events were obtained using nptII with improved G418 selection without generating escapes. G418 selection required longer recovery and selection periods, and resulted in a lower efficiency of initial transformants compared to hygromycin selection. Six independent fertile transgenic plants were recovered using nptII and G418, a frequency similar to that obtained with hygromycin selection. Soybean embryogenic cultures co-transformed with the hptII and nptII markers showed resistance to both hygromycin B and G418, while regeneration and plant fertility were not adversely affected. The nptII will be useful as a second selectable marker for multiple gene transformations in basic and applied soybean research.  相似文献   
40.
Summary The organization of actin microfilaments (MFs) was studied during pollen development ofBrassica napus cv. Topas. Cells were prepared using three techniques and double labelled for fluorescence microscopy with rhodamine-labelled phalloidin for MFs and Hoechst 33258 for DNA. Microfilaments are present at all stages of pollen development with the exception of tricellular pollen just prior to anthesis. Unicellular microspores contain MFs which radiate from the surface of the nuclear envelope into the cytoplasm. During mitosis MFs form a network partially surrounding the mitotic apparatus and extend into the cytoplasm. Both cytoplasmic and phragmoplast-associated MFs are present during cytokinesis. Nuclear associated-, cytoplasmic, and randomly oriented cortical MFs appear in the vegetative cell of the bicellular microspore. Cortical MFs in the vegetative cell organize into parallel MF bundles (MFBs) aligned transverse to the furrows. The MFBs disappear prior to microspore elongation. At anthesis MFs are restricted to the cortical areas subjacent to the furrows of the vegetative cell. The use of cytochalasin D to disrupt MF function resulted in: (1) displacement of the acentric nucleus in the unicellular microspore; (2) displacement of the spindle apparatus in the mitotic cell; (3) symmetrical growth of the bicellular microspore rather than elongation and (4) inhibition of pollen tube germination in the mature pollen grain. This suggests that MFs play an important role in anchoring the nucleus in the unicellular microspore as well as the spindle apparatus during microspore mitosis, in microspore shape determination and in pollen tube germination.Abbreviations MF microfilament - MFB microfilament bundle - rhph rhodamine phalloidin Dedicated to the memory of Professor John G. Torrey  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号