首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   11篇
  2024年   1篇
  2023年   2篇
  2022年   14篇
  2021年   13篇
  2020年   6篇
  2019年   6篇
  2018年   10篇
  2017年   13篇
  2016年   8篇
  2015年   13篇
  2014年   12篇
  2013年   23篇
  2012年   25篇
  2011年   13篇
  2010年   8篇
  2009年   5篇
  2008年   12篇
  2007年   15篇
  2006年   11篇
  2005年   8篇
  2004年   7篇
  2003年   13篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1996年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1980年   2篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1960年   1篇
排序方式: 共有269条查询结果,搜索用时 93 毫秒
81.
To confirm whether human cancer-induced stromal cells are derived from bone marrow, bone marrow (BM) cells obtained from beta-galactosidase transgenic and recombination activating gene 1 (RAG-1) deficient double-mutant mice (H-2b) were transplanted into sublethally irradiated severe combined immunodeficient (SCID) mice (H-2d). The human pancreatic cancer cell line Capan-1 was subcutaneously xenotransplanted into SCID recipients and stromal formation was analyzed on day 14 and on day 28. Immunohistochemical and immunofluorescence studies revealed that BM-derived endothelial cells (X-gal/CD31 or H-2b/CD31 double-positive cells) and myofibroblasts (X-gal/alpha-smooth muscle actin or H-2b/alpha-smooth muscle actin double-positive cells) were present within and around the cancer nests. On day 14, the frequencies of BM-derived endothelial cells and BM-derived myofibroblasts were 25.3+/-4.4% and 12.7+/-9.6%, respectively. On day 28, the frequency of BM-derived endothelial cells was 26.7+/-9.7%, which was similar to the value on day 14. However, the frequency of BM-derived myofibroblasts was significantly higher (39.8+/-17.1%) on day 28 than on day 14 (P<0.05). The topoisomerase IIalpha-positive ratio was 2.2+/-1.2% for the H-2b-positive myofibroblasts, as opposed to only 0.3+/-0.4% for the H-2b-negative myofibroblasts, significant proliferative activity was observed in the BM-derived myofibroblasts (P<0.05). Our results indicate that BM-derived myofibroblasts become a major component of cancer-induced stromal cells in the later stage of tumor development.  相似文献   
82.
83.
4β-Hydroxycholesterol (4β-OHC) is formed by Cytochrome P450 (CYP)3A and has drawn attention as an endogenous phenotyping probe for CYP3A activity. However, 4β-OHC is also increased by cholesterol autooxidation occurring in vitro due to dysregulated storage and in vivo by oxidative stress or inflammation, independent of CYP3A activity. 4α-hydroxycholesterol (4α-OHC), a stereoisomer of 4β-OHC, is also formed via autooxidation of cholesterol, not by CYP3A, and thus may have clinical potential in reflecting the state of cholesterol autooxidation. In this study, we establish a sensitive method for simultaneous quantification of 4β-OHC and 4α-OHC in human plasma using ultra-high performance liquid chromatography coupled to tandem mass spectrometry. Plasma samples were prepared by saponification, two-step liquid-liquid extraction, and derivatization using picolinic acid. Intense [M+H]+ signals for 4β-OHC and 4α-OHC di-picolinyl esters were monitored using electrospray ionization. The assay fulfilled the requirements of the US Food and Drug Administration guidance for bioanalytical method validation, with a lower limit of quantification of 0.5 ng/ml for both 4β-OHC and 4α-OHC. Apparent recovery rates from human plasma ranged from 88.2% to 101.5% for 4β-OHC, and 91.8% to 114.9% for 4α-OHC. Additionally, matrix effects varied between 86.2% and 117.6% for 4β-OHC and between 89.5% and 116.9% for 4α-OHC. Plasma 4β-OHC and 4α-OHC concentrations in healthy volunteers, stage 3–5 chronic kidney disease (CKD) patients, and stage 5D CKD patients as measured by the validated assay were within the calibration ranges in all samples. We propose this novel quantification method may contribute to accurate evaluation of in vivo CYP3A activity.Supplementary key words: cholesterol, cytochrome P450, kidney, kinetics, pharmacokinetics, 4β-hydroxycholesterol, 4α-hydroxycholesterol, cytochrome P450 3A, mass spectrometry, plasma

Pharmacokinetics of drugs show large interindividual variability, and some drug-metabolizing enzymes and transporters are involved in the variability. Cytochrome P450 (CYP)3A is a major subfamily of metabolic enzymes involved in the metabolism of some drugs in the liver and small intestine (1). The main isoenzymes of this subfamily are CYP3A4 and CYP3A5. There is a large interindividual variability in CYP3A activity among patients, and the variability was reported to affect the clinical efficacy and the adverse reaction of CYP3A substrate drugs (2, 3). Thus, phenotyping of CYP3A activity is clinically important for more effective and safer treatment by CYP3A substrate drugs.Midazolam has been reported to be useful and considered a standard probe for CYP3A phenotyping (4, 5). Although midazolam is commonly used in drug-drug interaction studies (6, 7, 8, 9), this drug has some limitations in clinical application. For example, multiple blood samplings are needed to calculate the clearance for phenotyping, which limits its use in infants and elderly people. Midazolam shows high protein binding especially to albumin (approximately 96%) (10), and the free fraction may increase in patients with lower albumin levels, resulting in apparently increased hepatic clearance. Thus, phenotyping using midazolam may not be suitable in some patients with liver disease such as cirrhosis or kidney failure.To overcome these problems, 4β-hydroxycholesterol (4β-OHC) has drawn attention as an endogenous phenotyping probe for CYP3A activity. 4β-OHC is formed by CYP3A4 and CYP3A5 (11, 12) and has a long plasma half-life (approximately 17 days) (13). Since there is no circadian change in plasma 4β-OHC concentrations, one-point blood sampling is sufficient for CYP3A phenotyping. 4β-OHC is slowly metabolized by CYP7A1 (14), and CYP7A1 activity is not affected by kidney failure (15). Therefore, plasma 4β-OHC concentration is a suitable probe for CYP3A phenotyping in infants, elderly people, and patients with kidney failure or liver diseases including cirrhosis (16, 17, 18, 19, 20, 21).Several quantification methods have been reported for the measurement of plasma 4β-OHC concentrations using gas chromatography coupled to mass spectrometry (11) and high-performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) (22, 23, 24, 25, 26). Recently, Hautajärvi et al. (27) reported an ultra-high performance liquid chromatography coupled to high resolution mass spectrometry method for quantification of plasma 4β-OHC and 4α-hydroxycholesterol (4α-OHC) concentrations. 4α-OHC, a stereoisomer of 4β-OHC, is formed via autooxidation of cholesterol, and not by CYP3A. Therefore, plasma 4α-OHC concentration reflects plasma sample stability, because plasma 4α-OHC concentration increases in uncontrolled storage condition (28). Furthermore, oxysterols including 4β-OHC and 4α-OHC have been reported to be elevated by cholesterol autoxidation due to oxidative stress or inflammation in the liver, regardless of CYP3A activity (29). Thus, simultaneous quantification of 4β-OHC and 4α-OHC is preferred for phenotyping of CYP3A activity using clinical plasma samples.In this study, we established a sensitive method for simultaneous quantification of 4β-OHC and 4α-OHC in human plasma using ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The method was applied to measure plasma 4β-OHC and 4α-OHC concentrations in healthy volunteers and patients with chronic kidney disease (CKD).  相似文献   
84.
Gutless tube-dwelling worms of pogonophorans (also known as frenulates) and vestimentiferans depend on primary production of endosymbiotic bacteria. The endosymbionts include thiotrophs that oxidize sulfur for autotrophic production and methanotrophs that oxidize and assimilate methane. Although most of the pogonophoran and vestimentiferan tube worms possess single thiotrophic 16S rRNA genes (16S rDNA) related to γ-proteobacteria, some pogonohorans are known to bear single methanotroph species or even dual symbionts of thiotrophs and methanotrophs. The vestimentiferan Lamellibrachia sp. L1 shows symbiotic 16S rDNA sequences of α-, β-, γ-, and ε-proteobacteria, varying among specimens, with RuBisCO form II gene (cbbM) sequences related to β-proteobacteria. An unidentified pogonophoran from the world’s deepest cold seep, 7326-m deep in the Japan Trench, hosts a symbiotic thiotroph based on 16S rDNA with the RuBisCO form I gene (cbbL). In contrast, a shallow-water pogonophoran (Oligobrachia mashikoi) in coastal Japan Sea has a methanotrophic 16S rDNA and thiotrophic cbbL, which may suggest the feature of type X methanotrophs. These observations demonstrate that pogonophoran and vestimentiferan worms have higher plasticity in bacterial symbioses than previously suspected.  相似文献   
85.
Experimental autoimmune encephalomyelitis (EAE) is caused by activation of myelin Ag-reactive CD4+ T cells. In the current study, we tested a strategy to prevent EAE by pretreatment of mice with genetically modified dendritic cells (DC) presenting myelin oligodendrocyte glycoprotein (MOG) peptide in the context of MHC class II molecules and simultaneously expressing TRAIL or Programmed Death-1 ligand (PD-L1). For genetic modification of DC, we used a recently established method to generate DC from mouse embryonic stem cells (ES cells) in vitro (ES-DC). ES cells were sequentially transfected with an expression vector for TRAIL or PD-L1 and an MHC class II-associated invariant chain-based MOG epitope-presenting vector. Subsequently, double-transfectant ES cell clones were induced to differentiate to ES-DC, which expressed the products of introduced genes. Treatment of mice with either of the double-transfectant ES-DC significantly reduced T cell response to MOG, cell infiltration into spinal cord, and the severity of MOG peptide-induced EAE. In contrast, treatment with ES-DC expressing MOG alone, irrelevant Ag (OVA) plus TRAIL, or OVA plus PD-L1, or coinjection with ES-DC expressing MOG plus ES-DC-expressing TRAIL or PD-L1 had no effect in reducing the disease severity. In contrast, immune response to irrelevant exogenous Ag (keyhole limpet hemocyanin) was not impaired by treatment with any of the genetically modified ES-DC. The double-transfectant ES-DC presenting Ag and simultaneously expressing immune-suppressive molecules may well prove to be an effective therapy for autoimmune diseases without inhibition of the immune response to irrelevant Ag.  相似文献   
86.
Benzodiazepines are commonly used as sedatives, sleeping aids, and anti‐anxiety drugs. However, chronic treatment with benzodiazepines is known to induce dependence, which is considered related to neuroplastic changes in the mesolimbic system. This study investigated the involvement of K+‐Cl? co‐transporter 2 (KCC2) in the sensitization to morphine‐induced hyperlocomotion after chronic treatment with zolpidem [a selective agonist of γ‐aminobutyric acid A‐type receptor (GABAAR) α1 subunit]. In this study, chronic treatment with zolpidem enhanced morphine‐induced hyperlocomotion, which is accompanied by the up‐regulation of KCC2 in the limbic forebrain. We also found that chronic treatment with zolpidem induced the down‐regulation of protein phosphatase‐1 (PP‐1) as well as the up‐regulation of phosphorylated protein kinase C γ (pPKCγ). Furthermore, PP‐1 directly associated with KCC2 and pPKCγ, whereas pPKCγ did not associate with KCC2. On the other hand, pre‐treatment with furosemide (a KCC2 inhibitor) suppressed the enhancing effects of zolpidem on morphine‐induced hyperlocomotion. These results suggest that the mesolimbic dopaminergic system could be amenable to neuroplastic change through a pPKCγ‐PP‐1‐KCC2 pathway by chronic treatment with zolpidem.  相似文献   
87.
The uncapping of telomeres induces a DNA damage response. In Schizosaccharomyces pombe, deletion of pot1 + causes telomere uncapping and rapid telomere resection, resulting in chromosome fusion. Using the nmt-pot1-aid strain, we previously reported that Pot1 shut-off causes telomere loss and chromosome fusion in S. pombe. However, the factors responsible for the resection of uncapped telomeres remain unknown. In this study, we investigated these factors and found that concomitant deletion of rqh1 + and exo1 + alleviated the loss of telomeres following Pot1 shut-off, suggesting that Rqh1 and Exo1 are redundantly involved in the resection of uncapped telomeres. We also investigated the role of Rqh1 helicase activity and found it to be essential for the resection of uncapped telomeres. Moreover, we found that Dna2 and Exo1 function redundantly in the resection of uncapped telomeres. Taken together, these results suggest that Exo1 and Rqh1-Dna2 redundantly contribute to the resection of uncapped telomeres. Therefore, our results demonstrate that nmt-pot1-aid is an important model strain to study the role of helicases and nucleases in the resection of uncapped telomeres and to improve our understanding of DNA double-strand break repair.  相似文献   
88.
89.
BackgroundDeep vein thrombosis (DVT) is a major cause of pulmonary thromboembolism and sudden death. Thus, it is important to consider the pathophysiology of DVT. Recently, iron has been reported to be associated with thrombotic diseases. Hence, in this study, we investigate the effects of dietary iron restriction on the process of thrombus resolution in a rat model of DVT.MethodsWe induced DVT in 8-week-old male Sprague-Dawley rats by performing ligations of their inferior venae cavae. The rats were then given either a normal diet (DVT group) or an iron-restricted diet (DVT+IR group). Thrombosed inferior venae cavae were harvested at 5 days after ligation.ResultsThe iron-restricted diet reduced venous thrombus size compared to the normal diet. Intrathrombotic collagen content was diminished in the DVT+IR group compared to the DVT group. In addition, intrathrombotic gene expression and the activity of matrix metalloproteinase-9 were increased in the DVT+IR group compared to the DVT group. Furthermore, the DVT+IR group had greater intrathrombotic neovascularization as well as higher gene expression levels of urokinase-type plasminogen activator and tissue-type plasminogen activator than the DVT group. The iron-restricted diet decreased intrathrombotic superoxide production compared to the normal diet.ConclusionsThese results suggest that dietary iron restriction affects the process of thrombus resolution in DVT.  相似文献   
90.
Ephs and FGFRs belong to a superfamily of receptor tyrosine kinases, playing important roles in stem cell biology. We previously reported that EphA4 and FGFR form a heterodimer following stimulation with ligands, trans-activating each other and signaling through a docking protein, FRS2α, that binds to both receptors. Here, we investigated whether the interaction between EphA4 and FGFRs can be generalized to other Ephs and FGFRs, and, in addition, examined the downstream signal mediating their function in embryonic neural stem/progenitor cells. We revealed that various Ephs and FGFRs interact with each other through similar molecular domains. When neural stem/progenitor cells were stimulated with FGF2 and ephrin-A1, the signal transduced from the EphA4/FGFR/FRS2α complex enhanced self-renewal, while stimulation with ephrin-A1 alone induced neuronal differentiation. The downstream signal required for neuronal differentiation appears to be MAP kinase mainly linked to the Ras family of G proteins. MAP kinase activation was delayed and sustained, distinct from the transient activation induced by FGF2. Interestingly, this effect on neuronal differentiation required the presence of FGFRs. Specific FGFR inhibitor almost completely abolished the function of ephrin-A1 stimulation. These findings suggest that the ternary complex of EphA, FGFR and FRS2α formed by ligand stimulation regulates self-renewal and differentiation of mouse embryonic neural stem/progenitor cells by ligand-specific fine tuning of the downstream signal via FRS2α.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号