首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   29篇
  2022年   5篇
  2021年   9篇
  2020年   6篇
  2018年   4篇
  2017年   7篇
  2015年   10篇
  2014年   12篇
  2013年   20篇
  2012年   22篇
  2011年   36篇
  2010年   13篇
  2009年   14篇
  2008年   26篇
  2007年   32篇
  2006年   28篇
  2005年   17篇
  2004年   29篇
  2003年   14篇
  2002年   18篇
  2001年   16篇
  2000年   11篇
  1999年   13篇
  1998年   4篇
  1997年   3篇
  1995年   4篇
  1992年   8篇
  1991年   10篇
  1990年   6篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1973年   1篇
  1972年   6篇
  1971年   2篇
  1970年   2篇
  1969年   8篇
  1967年   1篇
  1966年   1篇
  1965年   5篇
  1962年   1篇
  1960年   4篇
  1959年   1篇
排序方式: 共有472条查询结果,搜索用时 15 毫秒
91.
In our previous paper (Kimura, Y., et al., Biosci. Biotechnol. Biochem., 67, 1852-1856, 2003), we found that a complex type N-glycans containing beta1-3 galactose residue occurs on royal jelly glycoproteins. During structural analysis of minor components of royal jelly N-glycans, we found complex type N-glycans bearing both galactose and N-acetylgalactosamine residues. Detailed structural analysis of pyridylaminated oligosaccharide revealed that the newly found N-glycan had a complex type structure harboring a tumor marker (T-antigen) unit: Galbeta1-3GalNAcbeta1-4GlcNAcbeta1-2Manalpha1-6 (Galbeta1-3GalNAcbeta1-4GlcNAcbeta1-2Manalpha1-3) Manbeta1-4GlcNAcbeta1-4GlcNAc. To our knowledge, this may be the first report of the presence of the T-antigen unit in the N-glycan moiety of eucaryotic glycoproteins.  相似文献   
92.
Abnormal transforming growth factor-β (TGF-β) signaling is a critical contributor to the pathogenesis of various human diseases ranging from tissue fibrosis to tumor formation. Excessive TGF-β signaling stimulates fibrotic responses. Recent research has focused in the main on the antiproliferative effects of TGF-β in fibroblasts, and it is presently understood that TGF-β-stimulated cyclooxygenase-2 (COX-2) induction in fibroblasts is essential for antifibroproliferative effects of TGF-β. Both TGF-β and COX-2 have been implicated in tumor growth, invasion, and metastasis, and therefore tumor-associated fibroblasts are a recent topic of interest. Here we report the identification of positive and negative regulatory factors of COX-2 expression induced by TGF-β as determined using proteomic approaches. We show that TGF-β coordinately up-regulates three factors, heterogeneous nuclear ribonucleoprotein A/B (HNRPAB), nucleotide diphosphate kinase A (NDPK A), and nucleotide diphosphate kinase A (NDPK B). Functional pathway analysis showed that HNRPAB augments mRNA and protein levels of COX-2 and subsequent prostaglandin E2 (PGE2) production by suppressing degradation of COX-2 mRNA. In contrast, NDPK A and NDPK B attenuated mRNA and protein levels of COX-2 by affecting TGF-β-Smad2/3/4 signaling at the receptor level. Collectively, we report on a new regulatory pathway of TGF-β in controlling expression of COX-2 in fibroblasts, which advances our understanding of pathophysiological mechanisms of TGF-β.  相似文献   
93.
94.
Administered subcutaneously, D-4F or L-4F are equally efficacious, but only D-4F is orally efficacious because of digestion of L-4F by gut proteases. Orally administering niclosamide (a chlorinated salicylanilide used as a molluscicide, antihelminthic, and lampricide) in temporal proximity to oral L-4F (but not niclosamide alone) in apoE null mice resulted in significant improvement (P < 0.001) in the HDL-inflammatory index (HII), which measures the ability of HDL to inhibit LDL-induced monocyte chemotactic activity in endothelial cell cultures. Oral administration of L-[113-122]apoJ with niclosamide also resulted in significant improvement (P < 0.001) in HII. Oral administration of niclosamide and L-4F together with pravastatin to female apoE null mice at 9.5 months of age for six months significantly reduced aortic sinus lesion area (P = 0.02), en face lesion area (P = 0.033), and macrophage lesion area (P = 0.02) compared with pretreatment, indicating lesion regression. In contrast, lesions were significantly larger in mice receiving only niclosamide and pravastatin or L-4F and pravastatin (P < 0.001). In vitro niclosamide and L-4F tightly associated rendering the peptide resistant to trypsin digestion. Niclosamide itself did not inhibit trypsin activity. The combination of niclosamide with apolipoprotein mimetic peptides appears to be a promising method for oral delivery of these peptides.  相似文献   
95.
Infection of erythroid cells by Friend spleen focus-forming virus (SFFV) leads to acute erythroid hyperplasia in mice due to expression of its unique envelope glycoprotein, gp55. Erythroid cells expressing SFFV gp55 proliferate in the absence of their normal regulator, erythropoietin (Epo), because of interaction of the viral envelope protein with the erythropoietin receptor and a short form of the receptor tyrosine kinase Stk (sf-Stk), leading to constitutive activation of several signal transduction pathways. Our previous in vitro studies showed that phosphatidylinositol 3-kinase (PI3-kinase) is activated in SFFV-infected cells and is important in mediating the biological effects of the virus. To determine the role of PI3-kinase in SFFV-induced disease, mice deficient in the p85α regulatory subunit of class IA PI3-kinase were inoculated with different strains of SFFV. We observed that p85α status determined the extent of erythroid hyperplasia induced by the sf-Stk-dependent viruses SFFV-P (polycythemia-inducing strain of SFFV) and SFFV-A (anemia-inducing strain of SFFV) but not by the sf-Stk-independent SFFV variant BB6. Our data also indicate that p85α status determines the response of mice to stress erythropoiesis, consistent with a previous report showing that SFFV uses a stress erythropoiesis pathway to induce erythroleukemia. We further showed that sf-Stk interacts with p85α and that this interaction depends upon sf-Stk kinase activity and tyrosine 436 in the multifunctional docking site. Pharmacological inhibition of PI3-kinase blocked proliferation of primary erythroleukemia cells from SFFV-infected mice and the erythroleukemia cell lines derived from them. These results indicate that p85α may regulate sf-Stk-dependent erythroid proliferation induced by SFFV as well as stress-induced erythroid hyperplasia.The Friend spleen focus-forming virus (SFFV) is a highly pathogenic retrovirus that induces rapid erythroblastosis in susceptible strains of mice (for a review, see reference 42). Friend SFFV is a replication-defective virus with deletions in its env gene, giving rise to a unique glycoprotein, SFFV gp55. This unique glycoprotein confers pathogenicity to the virus; a vector encoding SFFV gp55 alone is sufficient to induce erythroblastosis in susceptible strains of mice (49). The Fv-2 gene encodes one of the key susceptibility factors for SFFV-induced erythroid disease (18, 37), as follows: the receptor tyrosine kinase Stk/RON, a member of the Met family of receptor tyrosine kinases (11-12). Susceptibility to SFFV-induced disease is associated with expression of a short form of the receptor tyrosine kinase Stk, termed sf-Stk, that is transcribed from an internal promoter within the Stk gene of Fv-2-susceptible (Fv-2ss) mice but not Fv-2-resistant (Fv-2rr) mice (37) and is abundantly expressed in erythroid cells (11). Infection of erythroid cells with the polycythemia-inducing strain of SFFV (SFFV-P) induces erythropoietin (Epo)-independent proliferation and differentiation, whereas erythroid cells infected with the anemia-inducing strain of SFFV (SFFV-A) proliferate in the absence of Epo but still require Epo for differentiation (42). Previous studies demonstrated that this Epo-independent erythroblastosis is due to the cell surface interaction of the SFFV envelope protein with the Epo receptor (EpoR) and sf-Stk (31). While interaction with the EpoR appears to be responsible mainly for the induction of Epo-independent differentiation (52), Epo-independent erythroid cell proliferation depends upon activation of sf-Stk. We recently demonstrated that sf-Stk covalently interacts with SFFV-P gp55 in hematopoietic cells that express the EpoR and that this interaction induces sf-Stk activation (31). Furthermore, exogenous expression of sf-Stk, but not a kinase-inactive mutant of sf-Stk, in bone marrow cells from sf-Stk null mice can restore Epo-independent erythroid colony formation in response to SFFV infection (5, 41). Thus, the SFFV envelope glycoprotein induces Epo-independent proliferation of erythroid cells mainly by activating sf-Stk. While sf-Stk is a key susceptibility factor for erythroblastosis induced by both SFFV-P and SFFV-A (18), it is not required for the induction of erythroblastosis by the SFFV mutant BB6, which encodes an envelope glycoprotein, gp42, that is deleted in the membrane-proximal extracellular domain (19) and does not induce sf-Stk activation (31). gp42 of SFFV-BB6 appears to exert its biological effects on erythroid cells by efficiently interacting with the EpoR (9). Compared with wild-type SFFV, SFFV-BB6 causes a relatively indolent and slowly developing disease in mice (19).A number of signaling pathways normally activated in erythroid cells after erythropoietin (Epo) binds to its cell surface receptor (40) are constitutively activated in erythroid cells infected with SFFV. These include JAK/STAT, Ras/Raf/mitogen-activated protein kinase (MAPK), Jun N-terminal kinase, and the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathways (24, 25, 28-30, 32). SFFV gp55 is thought to activate these pathways by interacting with either the EpoR or sf-Stk (17, 31, 43). In several in vitro systems, class IA PI3-kinase has been shown to be activated by Epo through the EpoR (8, 20, 21) or by SFFV through sf-Stk (5, 14). We and others have shown that the PI3-kinase pathway is important for the induction of Epo independence by SFFV (5, 29). The class IA subclass of PI3-kinase is a heterodimer comprising the p110 (α, β, δ) catalytic unit and one of five regulatory subunits (85α, p55α, p50α, 85β, and 55γ) (15). The first 3 regulatory subunits are all splice variants of the same gene (pik3r1). Deletion of pik3r1, which encodes p85α, p55α, and p50α, is lethal (6, 7), and these regulatory subunits of PI3-kinase are required for normal murine fetal erythropoiesis in mice (10).To determine the role of p85α in SFFV-induced erythroleukemia, we used a distinct nonlethal pik3r1 knockout mouse which lacks only the p85α regulatory subunit of PI3-kinase (45, 47), allowing the study of SFFV-induced erythroleukemia in adult mice. Our results indicate that p85α regulates SFFV-induced erythroid hyperplasia induced in vivo by sf-Stk-dependent, but not sf-Stk-independent, isolates of the virus as well as stress-induced erythropoiesis and suggest that this regulation may occur through the interaction of sf-Stk with p85α.  相似文献   
96.
BACKGROUND:The COVID-19 pandemic has exacerbated disparities in poverty and illness for people in vulnerable circumstances in ethnocultural communities. We sought to understand the evolving impacts of COVID-19 on ethnocultural communities to inform intersectoral advocacy and community action.METHODS:The Illuminate Project used participatory action research, with cultural health brokers as peer researchers, from Sept. 21 to Dec. 31, 2020, in Edmonton, Alberta. Twenty-one peer researchers collected narratives from members of ethnocultural communities and self-interpreted them as they entered the narratives into the SenseMaker platform, a mixed-method data collection tool. The entire research team analyzed real-time, aggregate, quantitative and qualitative data to identify emerging thematic domains, then visualized these domains with social network analysis.RESULTS:Brokers serving diverse communities collected 773 narratives. Identified domains illuminate the evolving and entangled impacts of COVID-19 including the following: COVID-19 prevention and management; care of acute, chronic and serious illnesses other than COVID-19; maternal care; mental health and triggers of past trauma; financial insecurity; impact on children and youth and seniors; and legal concerns. We identified that community social capital and cultural brokering are key assets that facilitate access to formal health and social system supports.INTERPRETATION:The Illuminate Project has illustrated the entangled, systemic issues that result in poor health among vulnerable members of ethnocultural communities, and the exacerbating effects of COVID-19, which also increased barriers to mitigation. Cultural brokering and community social capital are key supports for people during the COVID-19 pandemic. These findings can inform policy to reduce harm and support community resiliency.

Mahatma Gandhi observed that “the true measure of any society can be found in how it treats its most vulnerable members.” Ethnocultural communities, defined by their unique shared characteristics (e.g., cultural traditions, language, country of origin),1 face greater challenges and have higher rates of poverty and illness than the general Canadian population. Migration results in conditions that affect all social determinants of health and disproportionally affect health outcomes, herein referred to as vulnerable circumstances.2,3 The emergence of major outbreaks of SARS-CoV-2 infections in ethnocultural communities highlights both the vulnerable circumstances of these communities and the disparities they face in accessing high-quality, culturally appropriate information and support.47 Studies have shown substantial variation in deaths attributed to COVID-19 based on factors such as age, sex, ethnicity, length of time in Canada, income and education.811 However, given the well-known gap in reporting comprehensive COVID-19 data in relation to race and ethnicity, efforts to measure its impact are hampered.812 There is an urgent need to understand the evolving challenges of COVID-19 to inform action and public policy that can mitigate these challenges.To understand evolving situations of complexity and crisis, sensemaking, defined as “a continuous process to establish situational awareness,”13 is a crucial undertaking.14 Using participatory action research,1518 we sought to understand the evolving impacts of COVID-19 on ethnocultural communities to inform broader national efforts to migitate the impacts of COVID-19. Particularly, we sought to understand how the challenges of COVID-19 are entangled with contextual factors at multiple levels, how families and communities are leveraging strengths and social capital to adapt, and the role of cultural brokers in managing the crisis.  相似文献   
97.
Thymine glycol (Tg) is one of predominant oxidative DNA lesions caused by ionizing radiation and other oxidative stresses. Human NTH1 is a bifunctional enzyme with DNA glycosylase and AP lyase activities and removes Tg as the first step of base excision repair (BER). We have searched for the factors interacting with NTH1 by using a pull-down assay and found that GST-NTH1 fusion protein precipitates proliferating cell nuclear antigen (PCNA) and p53 as well as XPG from human cell-free extracts. GST-NTH1 also bound to recombinant FLAG-tagged XPG, PCNA, and (His)6-tagged p53 proteins, indicating direct protein-protein interaction between those proteins. Furthermore, His-p53 and FLAG-XPG, but not PCNA, stimulated the Tg DNA glycosylase/AP lyase activity of GST-NTH1 or NTH1. These results provide an insight into the positive regulation of BER reaction and also suggest a possible linkage between BER of Tg and other cellular mechanisms.  相似文献   
98.
alpha-Tocopheryl succinate (TS) is known to induce apoptosis in various cells and has attracted attention as a chemotherapeutic agent. Recently, we reported the structural significance of the terminal dicarboxylic moiety for the action of TS [J. Nutr. Sci. Vitaminol. 49 (2003) 310-314]. In this study, to determine details of the relationship between the structure and the function of the terminal ester moiety of alpha-tocopherol (alpha-T), we synthesized four novel esters, alpha-tocopheryl oxalate (TO), alpha-tocopheryl malonate (TM), alpha-tocopheryl pimelate (TP) and alpha-tocopheryl succinate ethyl ester (TSE), and compared their apoptogenic activities with those of TS, alpha-T, gamma-tocopherol (gamma-T) and two commercially available alpha-T derivatives, alpha-tocopheryl nicotinate (TN) and alpha-tocopheryl acetate (TA), in vascular smooth muscle cells and a mouse breast cancer cell line C127I. TO and TM in addition to TS, but not the others, induced apoptosis in both cells. Particularly, TO was the most potent of all alpha-T derivatives used. The addition of exogenous superoxide dismutase (SOD) significantly prevented the apoptosis induced by TM as well as that by TS as reported previously, but did not affect TO-induced apoptosis. These results suggest that O(2)(-) generated exogenously participates in TM-induced apoptosis but not in TO-induced apoptosis. The difference in their apoptotic effects is attributed to structural properties of the terminal dicarboxylic moiety, which has an inflexible plane conformation in TO, while it is highly flexible in TM and TS.  相似文献   
99.
Human inducible nitric oxide synthase (iNOS) is most readily observed in macrophages from patients with inflammatory diseases like atherosclerosis. The aim of the present study was to find out the combined effect of male sex hormone; testosterone and apocynin (NADPH oxidase inhibitor) on cytokine-induced iNOS production. THP-1 cells were differentiated into macrophages by phorbol myristate acetate (PMA). Expression of iNOS was induced by the addition of cytokine mixture? Testosterone was added at different concentrations (10(-6)-10(-12) M) with apocynin (1 mM). Testosterone (10(-8), 10(-10) M) inhibited NOx production in cytokine-added THP-1 cells which was further confirmed by quantikine assay of iNOS protein and RT-PCR analysis. Testosterone treatment decreased 40% of superoxide anion production. Testosterone showed inhibition of NADPH oxidase, especially expression of p67phox and p47phox (cytosol subunits). Addition of testosterone with apocynin further decreased the expression of p67phox and p47phox subunits of NADPH oxidase. The findings of the present study suggest that, testosterone; the male androgen plays an important role in the prevention of atherogenesis. Even though apocynin does not have any role on NO production, addition of apocynin together with testosterone is effective in suppressing iNOS activity.  相似文献   
100.
Endoglycoceramidase (EGCase; EC 3.2.1.123) is an enzyme capable of cleaving the glycosidic linkage between oligosaccharides and ceramides of various glycosphingolipids. We detected strong EGCase activity in animals belonging to Cnidaria, Mollusca, and Annelida and cloned the enzyme from a hydra, Hydra magnipapillata. The hydra EGCase, consisting of 517 amino acid residues, showed 19.2% and 50.2% identity to the Rhodcoccus and jellyfish EGCases, respectively. The recombinant hydra enzyme, expressed in CHOP (Chinese hamster ovary cells expressing polyoma LT antigen) cells, hydrolyzed [14C]GM1a to produce [14C]ceramide with a pH optimum at 3.0-3.5. Whole mount in situ hybridization and immunocytochemical analysis revealed that EGCase was widely expressed in the endodermal layer, especially in digestive cells. GM1a injected into the gastric cavity was incorporated and then directly catabolized by EGCase to produce GM1a-oligosaccharide and ceramide, which were further degraded by exoglycosidases and ceramidase, respectively. However, hydra exoglycosidases did not hydrolyze GM1a directly. These results indicate that the EGCase is indispensable for the catabolic processing of dietary glycosphingolipids in hydra, demonstrating the unique catabolic pathway for glyosphingolipids in the animal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号