全文获取类型
收费全文 | 443篇 |
免费 | 30篇 |
专业分类
473篇 |
出版年
2022年 | 6篇 |
2021年 | 9篇 |
2020年 | 6篇 |
2018年 | 4篇 |
2017年 | 7篇 |
2015年 | 10篇 |
2014年 | 12篇 |
2013年 | 20篇 |
2012年 | 22篇 |
2011年 | 36篇 |
2010年 | 13篇 |
2009年 | 14篇 |
2008年 | 26篇 |
2007年 | 32篇 |
2006年 | 28篇 |
2005年 | 17篇 |
2004年 | 29篇 |
2003年 | 14篇 |
2002年 | 18篇 |
2001年 | 16篇 |
2000年 | 11篇 |
1999年 | 13篇 |
1998年 | 4篇 |
1997年 | 3篇 |
1995年 | 4篇 |
1992年 | 8篇 |
1991年 | 10篇 |
1990年 | 6篇 |
1989年 | 5篇 |
1988年 | 2篇 |
1987年 | 5篇 |
1985年 | 4篇 |
1984年 | 2篇 |
1983年 | 2篇 |
1980年 | 5篇 |
1979年 | 3篇 |
1978年 | 2篇 |
1977年 | 4篇 |
1976年 | 1篇 |
1973年 | 1篇 |
1972年 | 6篇 |
1971年 | 2篇 |
1970年 | 2篇 |
1969年 | 8篇 |
1967年 | 1篇 |
1966年 | 1篇 |
1965年 | 5篇 |
1962年 | 1篇 |
1960年 | 4篇 |
1959年 | 1篇 |
排序方式: 共有473条查询结果,搜索用时 15 毫秒
51.
Fujino S Akiyama D Akaboshi S Fujita T Watanabe Y Tamai Y 《Bioscience, biotechnology, and biochemistry》2006,70(2):377-386
Phospholipase B (PLB) from the asporogenous yeast Candida utilis was purified to homogeneity from a culture broth. The apparent molecular mass was 90-110 kDa by SDS-PAGE. The enzyme had two pH optima, one acidic (pH 3.0) and the other alkaline (pH 7.5). At acidic pH the enzyme hydrolyzed all phospholipids tested without metal ions. On the other hand, the PLB showed substrate specificity and required metal ions for alkaline activity.The cDNA sequence of the PLB was analyzed by a combination of several PCR procedures. The PLB encoded a protein consisting of 643 amino acids. The amino acid sequence contained a lipase consensus sequence (GxSxG) and catalytic arginine and aspartic acid motifs which were identified as the catalytic triad in the PLB from Kluyveromyces lactis, suggesting that the catalytic mechanism of the PLB is similar to that of cytosolic phospholipase A(2) (cPLA(2)), found in mammalian tissues. 相似文献
52.
Eyelid opening stretches mechanoreceptors in the supratarsal Müller muscle to activate the proprioceptive fiber supplied by the trigeminal mesencephalic nucleus. This proprioception induces reflex contractions of the slow-twitch fibers in the levator palpebrae superioris and frontalis muscles to sustain eyelid and eyebrow positions against gravity. The cell bodies of the trigeminal proprioceptive neurons in the mesencephalon potentially make gap-junctional connections with the locus coeruleus neurons. The locus coeruleus is implicated in arousal and autonomic function. Due to the relationship between arousal, ventromedial prefrontal cortex, and skin conductance, we assessed whether upgaze with trigeminal proprioceptive evocation activates sympathetically innervated sweat glands and the ventromedial prefrontal cortex. Specifically, we examined whether 60° upgaze induces palmar sweating and hemodynamic changes in the prefrontal cortex in 16 subjects. Sweating was monitored using a thumb-mounted perspiration meter, and prefrontal cortex activity was measured with 45-channel, functional near-infrared spectroscopy (fNIRS) and 2-channel NIRS at Fp1 and Fp2. In 16 subjects, palmar sweating was induced by upgaze and decreased in response to downgaze. Upgaze activated the ventromedial prefrontal cortex with an accumulation of integrated concentration changes in deoxyhemoglobin, oxyhemoglobin, and total hemoglobin levels in 12 subjects. Upgaze phasically and degree-dependently increased deoxyhemoglobin level at Fp1 and Fp2, whereas downgaze phasically decreased it in 16 subjects. Unilateral anesthetization of mechanoreceptors in the supratarsal Müller muscle used to significantly reduce trigeminal proprioceptive evocation ipsilaterally impaired the increased deoxyhemoglobin level by 60° upgaze at Fp1 or Fp2 in 6 subjects. We concluded that upgaze with strong trigeminal proprioceptive evocation was sufficient to phasically activate sympathetically innervated sweat glands and appeared to induce rapid oxygen consumption in the ventromedial prefrontal cortex and to rapidly produce deoxyhemoglobin to regulate physiological arousal. Thus, eyelid opening with trigeminal proprioceptive evocation may activate the ventromedial prefrontal cortex via the mesencephalic trigeminal nucleus and locus coeruleus. 相似文献
53.
Namiki K Nakamura A Furuya M Mizuhashi S Matsuo Y Tokuhara N Sudo T Hama H Kuwaki T Yano S Kimura S Kasuya Y 《Journal of receptor and signal transduction research》2007,27(2-3):99-111
We investigated how p38alpha mitogen-activated protein kinase (p38) is related to kainate-induced epilepsy and neuronal damages, by using the mice with a single copy disruption of the p38 alpha gene (p38alpha(+/-)). Mortality rate and seizure score of p38alpha(+/-) mice administered with kainate were significantly reduced compared with the case of wild-type (WT) mice. This was clearly supported by the electroencephalography data in which kainate-induced seizure duration and frequency in the brain of p38alpha(+/-) mice were significantly suppressed compared to those of WT mice. As a consequence of seizure, kainate induced delayed neuronal damages in parallel with astrocytic growth in the hippocampus and ectopic innervation of the mossy fibers into the stratum oriens in the CA3 region of hippocampus in WT mice, whose changes were moderate in p38alpha(+/-) mice. Likewise, kainate-induced phosphorylation of calcium/calmodulin-dependent kinase II in the hippocampus of p38alpha (+/-) mice was significantly decreased compared to that of WT mice. These results suggest that p38alpha signaling pathway plays an important role in epileptic seizure and excitotoxicity. 相似文献
54.
Discovery of a small-molecule inhibitor and cellular probe of Keap1–Nrf2 protein–protein interaction
Longqin Hu Sadagopan Magesh Lin Chen Lili Wang Timothy A. Lewis Yu Chen Carol Khodier Daigo Inoyama Lesa J. Beamer Thomas J. Emge Jian Shen John E. Kerrigan Ah-Ng Tony Kong Sivaraman Dandapani Michelle Palmer Stuart L. Schreiber Benito Munoz 《Bioorganic & medicinal chemistry letters》2013,23(10):3039-3043
A high-throughput screen (HTS) of the MLPCN library using a homogenous fluorescence polarization assay identified a small molecule as a first-in-class direct inhibitor of Keap1–Nrf2 protein–protein interaction. The HTS hit has three chiral centers; a combination of flash and chiral chromatographic separation demonstrated that Keap1-binding activity resides predominantly in one stereoisomer (SRS)-5 designated as ML334 (LH601A), which is at least 100× more potent than the other stereoisomers. The stereochemistry of the four cis isomers was assigned using X-ray crystallography and confirmed using stereospecific synthesis. (SRS)-5 is functionally active in both an ARE gene reporter assay and an Nrf2 nuclear translocation assay. The stereospecific nature of binding between (SRS)-5 and Keap1 as well as the preliminary but tractable structure–activity relationships support its use as a lead for our ongoing optimization 相似文献
55.
Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed arabidopsis 总被引:14,自引:0,他引:14
DeWald DB Torabinejad J Jones CA Shope JC Cangelosi AR Thompson JE Prestwich GD Hama H 《Plant physiology》2001,126(2):759-769
The phosphoinositide phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] is a key signaling molecule in animal cells. It can be hydrolyzed to release 1,2-diacyglycerol and inositol 1,4,5-trisphosphate (IP(3)), which in animal cells lead to protein kinase C activation and cellular calcium mobilization, respectively. In addition to its critical roles in constitutive and regulated secretion of proteins, PtdIns(4,5)P(2) binds to proteins that modify cytoskeletal architecture and phospholipid constituents. Herein, we report that Arabidopsis plants grown in liquid media rapidly increase PtdIns(4,5)P(2) synthesis in response to treatment with sodium chloride, potassium chloride, and sorbitol. These results demonstrate that when challenged with salinity and osmotic stress, terrestrial plants respond differently than algae, yeasts, and animal cells that accumulate different species of phosphoinositides. We also show data demonstrating that whole-plant IP(3) levels increase significantly within 1 min of stress initiation, and that IP(3) levels continue to increase for more than 30 min during stress application. Furthermore, using the calcium indicators Fura-2 and Fluo-3 we show that root intracellular calcium concentrations increase in response to stress treatments. Taken together, these results suggest that in response to salt and osmotic stress, Arabidopsis uses a signaling pathway in which a small but significant portion of PtdIns(4,5)P(2) is hydrolyzed to IP(3). The accumulation of IP(3) occurs during a time frame similar to that observed for stress-induced calcium mobilization. These data also suggest that the majority of the PtdIns(4,5)P(2) synthesized in response to salt and osmotic stress may be utilized for cellular signaling events distinct from the canonical IP(3) signaling pathway. 相似文献
56.
Ueda K Saichi N Takami S Kang D Toyama A Daigo Y Ishikawa N Kohno N Tamura K Shuin T Nakayama M Sato TA Nakamura Y Nakagawa H 《PloS one》2011,6(4):e18567
The mass spectrometry-based peptidomics approaches have proven its usefulness in several areas such as the discovery of physiologically active peptides or biomarker candidates derived from various biological fluids including blood and cerebrospinal fluid. However, to identify biomarkers that are reproducible and clinically applicable, development of a novel technology, which enables rapid, sensitive, and quantitative analysis using hundreds of clinical specimens, has been eagerly awaited. Here we report an integrative peptidomic approach for identification of lung cancer-specific serum peptide biomarkers. It is based on the one-step effective enrichment of peptidome fractions (molecular weight of 1,000-5,000) with size exclusion chromatography in combination with the precise label-free quantification analysis of nano-LC/MS/MS data set using Expressionist proteome server platform. We applied this method to 92 serum samples well-managed with our SOP (standard operating procedure) (30 healthy controls and 62 lung adenocarcinoma patients), and quantitatively assessed the detected 3,537 peptide signals. Among them, 118 peptides showed significantly altered serum levels between the control and lung cancer groups (p<0.01 and fold change >5.0). Subsequently we identified peptide sequences by MS/MS analysis and further assessed the reproducibility of Expressionist-based quantification results and their diagnostic powers by MRM-based relative-quantification analysis for 96 independently prepared serum samples and found that APOA4 273-283, FIBA 5-16, and LBN 306-313 should be clinically useful biomarkers for both early detection and tumor staging of lung cancer. Our peptidome profiling technology can provide simple, high-throughput, and reliable quantification of a large number of clinical samples, which is applicable for diverse peptidome-targeting biomarker discoveries using any types of biological specimens. 相似文献
57.
58.
59.
Sprouty2 is involved in the control of osteoblast proliferation and differentiation through the FGF and BMP signaling pathways 下载免费PDF全文
Takaharu Taketomi Tomohiro Onimura Daigo Yoshiga Daichi Muratsu Terukazu Sanui Takao Fukuda Jingo Kusukawa Seiji Nakamura 《Cell biology international》2018,42(9):1106-1114
Fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) play essential roles in bone formation and osteoblast activity through the extracellular signal‐regulated kinase 1/2 (ERK1/2) and Smad pathways. Sprouty family members are intracellular inhibitors of the FGF signaling pathway, and four orthologs of Sprouty have been identified in mammals. In vivo analyses have revealed that Sprouty2 is associated with bone formation. However, the mechanism by which the Sprouty family controls bone formation has not been clarified. In this study, we investigated the involvement of Sprouty2 in osteoblast proliferation and differentiation. We examined Sprouty2 expression in MC3T3‐E1 cells, and found that high levels of Sprouty2 expression were induced by basic FGF stimulation. Overexpression of Sprouty2 in MC3T3‐E1 cells resulted in suppressed proliferation compared with control cells. Sprouty2 negatively regulated the phosphorylation of ERK1/2 after basic FGF stimulation, and of Smad1/5/8 after BMP stimulation. Furthermore, Sprouty2 suppressed the expression of osterix, alkaline phosphatase, and osteocalcin mRNA, which are markers of osteoblast differentiation. Additionally, Sprouty2 inhibited osteoblast matrix mineralization. These results suggest that Sprouty2 is involved in the control of osteoblast proliferation and differentiation by downregulating the FGF‐ERK1/2 and BMP‐Smad pathways, and suppresses the induction of markers of osteoblast differentiation. 相似文献
60.