首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1543篇
  免费   90篇
  2022年   14篇
  2021年   24篇
  2020年   12篇
  2019年   12篇
  2018年   29篇
  2017年   14篇
  2016年   35篇
  2015年   47篇
  2014年   43篇
  2013年   82篇
  2012年   87篇
  2011年   78篇
  2010年   46篇
  2009年   47篇
  2008年   72篇
  2007年   67篇
  2006年   58篇
  2005年   82篇
  2004年   82篇
  2003年   73篇
  2002年   45篇
  2001年   66篇
  2000年   52篇
  1999年   45篇
  1998年   21篇
  1997年   13篇
  1996年   19篇
  1995年   11篇
  1994年   15篇
  1993年   14篇
  1992年   27篇
  1991年   25篇
  1990年   18篇
  1989年   24篇
  1988年   29篇
  1987年   24篇
  1986年   22篇
  1985年   17篇
  1984年   12篇
  1983年   17篇
  1982年   11篇
  1981年   7篇
  1980年   14篇
  1979年   14篇
  1978年   6篇
  1977年   8篇
  1976年   6篇
  1973年   6篇
  1971年   9篇
  1966年   5篇
排序方式: 共有1633条查询结果,搜索用时 15 毫秒
991.
992.
Recently we identified four conjugated glucuronide metabolites of epicatechin, (?)-epicatechin-3′-O-glucuronide (E3′G), 4′-O-methyl-(?)-epicatechin-3′-O-glucuronide (4′ME3′G), (?)-epicatechin-7-O-glucuronide (E7G) and 3′-O-methyl-(?)-epicatechin-7-O-glucuronide (3′ME7G) from plasma and urine. E3′G and 4′ME3′G were isolated from human urine, while E7G and 3′ME7G were isolated from rats that had received oral administration of (?)-epicatechin (Natsume et al. (2003), Free Radic. Biol. Med. 34, 840–849). It has been suggested that these metabolites possess considerable in vivo activity, and therefore we carried out a study to compare the antioxidant activities of the metabolites with that of the parent compound. This was achieved by measuring superoxide scavenging activity, reduction of plasma TBARS production and reduced susceptibility of low-density-lipoprotein (LDL) to oxidation. (?)-Epicatechin was found to have more potent antioxidant activity than the conjugated glucuronide metabolites. Both (?)-epicatechin and E7G had marked antioxidative properties with respect to superoxide radical scavenging activity, plasma oxidation induced by 2,2′-azobis-(2-aminopropane) dihydrochloride (AAPH) and LDL oxidation induced by copper ions or 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile) (MeO-AMVN). In contrast, the other metabolites had light antioxidative activities over the range of physiological concentrations found in plasma.  相似文献   
993.
The nongeniculate species Neogoniolithon brassica‐florida (Harvey) Setchell et Mason is circumscribed as a polymorphic species with various gross morphologies due to it being synonymized with several previous species. However, small subunit rDNA and cox1 analyses showed that N. brassica‐florida was polyphyletic, and strongly imply that crustose species lacking any protuberances such as Neogoniolithon fosliei (Heydrich) Setchell et Mason and species with protuberances or branches such as N. brassica‐florida and N. frutescens (Foslie) Setchell et Mason should be treated as genetically different groups (species). Therefore, we propose the resurrection of N. frutescens. We also confirmed that N. trichotomum was distinguished from N. frutescens by slender uniform diameter branches, a conceptacle with a prominent ostiole, and large cox1 interspecific sequence differences. Male and female reproductive structures of N. trichotomum were illustrated for the first time. Neogoniolithon fosliei, was divided into three clades, each of which was recognized as a species complex based on interspecific level sequence differences within clade and morphological differences. Therefore, we treated the clade most similar to N. fosliei as N. fosliei complex (Clade B), and the other clades as respective complexes of N. cf. fosliei with yellow conceptacles (Clade A) or N. cf. fosliei with large conceptacles (Clade C). Of two species complexes (Clade A and B) were morphologically consistent with two entities of N. fosliei previously reported in the Ryukyu Islands, Japan, which is supported by their niche partitioning. DNA barcoding research of nongeniculate corallines can promote the finding of more reliable taxonomic characters and the understanding of their biological aspects.  相似文献   
994.
A series of nine polypyridyl-ruthenium (II) complexes (N-ligands = 2,2′-bipyridines; 2,2′-6′,2′-terpyridines, di-alkyloxy-2,2′-6,2-bipyridine-3,3′-di-carboxylates), were tested against Mycobacterium tuberculosis (MBT). The complex (11) showed remarkable activity against MBT as compared to other complexes, (1–10). The aquo ligand of complex (11), as opposed to other chloro and acetonitrile derivatives, appears to play a key role in the antitubercular potency of this new class of metal-based compounds.  相似文献   
995.
Fe(II)- and α-ketoglutarate (α-KG)-dependent dioxygenases are a large and diverse superfamily of mononuclear, non-heme enzymes that perform a variety of oxidative transformations typically coupling oxidative decarboxylation of α-KG with hydroxylation of a prime substrate. The biosynthetic gene clusters for several nucleoside antibiotics that contain a modified uridine component, including the lipopeptidyl nucleoside A-90289 from Streptomyces sp. SANK 60405, have recently been reported, revealing a shared open reading frame with sequence similarity to proteins annotated as α-KG:taurine dioxygenases (TauD), a well characterized member of this dioxygenase superfamily. We now provide in vitro data to support the functional assignment of LipL, the putative TauD enzyme from the A-90289 gene cluster, as a non-heme, Fe(II)-dependent α-KG:UMP dioxygenase that produces uridine-5'-aldehyde to initiate the biosynthesis of the modified uridine component of A-90289. The activity of LipL is shown to be dependent on Fe(II), α-KG, and O(2), stimulated by ascorbic acid, and inhibited by several divalent metals. In the absence of the prime substrate UMP, LipL is able to catalyze oxidative decarboxylation of α-KG, although at a significantly reduced rate. The steady-state kinetic parameters using optimized conditions were determined to be K(m)(α-KG) = 7.5 μM, K(m)(UMP) = 14 μM, and k(cat) ≈ 80 min(-1). The discovery of this new activity not only sets the stage to explore the mechanism of LipL and related dioxygenases further but also has critical implications for delineating the biosynthetic pathway of several related nucleoside antibiotics.  相似文献   
996.
The subfamily Mastophoroideae (Corallinaceae, Rhodophyta) is characterized by species possessing nongeniculate, uniporate tetrasporangial conceptacles without apical plugs, the presence of cell fusions, and the absence of secondary pit connections. However, molecular phylogenetic studies not including the type genus Mastophora indicated that the Mastophoroideae was polyphyletic. Our molecular phylogenetic analysis of the subfamily including the type genus using DNA sequences of SSU rDNA and plastid‐encoded gene of PSII reaction center protein D1 (psbA) revealed that Mastophora formed a robust clade only with Metamastophora. The other mastophoroid genera were divided into six lineages within the family Corallinaceae. Five supported lineages—(i) Pneophyllum; (ii) Hydrolithon gardineri (Foslie) Verheij et Prud’homme, Hydrolithon onkodes (Heydr.) Penrose et Woelk., and Hydrolithon pachydermum (Foslie) J. C. Bailey, J. E. Gabel et Freshwater; (iii) Hydrolithon reinboldii (Weber Bosse et Foslie) Foslie; (iv) Spongites; and (v) Neogoniolithon—were clearly distinguished by the combination of characters including the presence or absence of palisade cells and trichocytes in large, tightly packed horizontal fields and features of tetrasporangial and spermatangial conceptacles. Therefore, we amend the Mastophoroideae to be limited to Mastophora and Metamastophora with a thin thallus with basal filaments comprised of palisade cells, tetrasporangial conceptacles formed by filaments peripheral to fertile areas, and spermatangia derived only from the floor of male conceptacles. This emendation supports Setchell’s (1943) original definition of the Mastophoroideae as having thin thalli. We also propose the establishment of three new subfamilies, Hydrolithoideae subfam. nov. including Hydrolithon, Porolithoideae subfam. nov. including the resurrected genus Porolithon, and Neogoniolithoideae subfam. nov. including Neogoniolithon. Taxonomic revisions of Pneophyllum and Spongites were not made because we did not examine their type species.  相似文献   
997.
p125/Sec23ip is a phospholipase A(1)-like protein that interacts with Sec23, a coat component of COPII vesicles that bud from endoplasmic reticulum exit sites. To understand its physiological function, we produced p125 knockout mice. The p125 knockout mice grew normally, but males were subfertile. Sperm from p125-deficient mice had round heads and lacked the acrosome, an organelle containing the enzymes responsible for fertilization. p125 was found to be expressed at stages I-XII of spermatogenesis, similar to the expression pattern of proteins involved in acrosome biogenesis. These results suggest that p125 plays an important role in spermiogenesis.  相似文献   
998.
F(o)F(1)-ATP synthase is one of the most ubiquitous enzymes; it is found widely in the biological world, including the plasma membrane of bacteria, inner membrane of mitochondria and thylakoid membrane of chloroplasts. However, this enzyme has a unique mechanism of action: it is composed of two mechanical rotary motors, each driven by ATP hydrolysis or proton flux down the membrane potential of protons. The two molecular motors interconvert the chemical energy of ATP hydrolysis and proton electrochemical potential via the mechanical rotation of the rotary shaft. This unique energy transmission mechanism is not found in other biological systems. Although there are other similar man-made systems like hydroelectric generators, F(o)F(1)-ATP synthase operates on the nanometre scale and works with extremely high efficiency. Therefore, this enzyme has attracted significant attention in a wide variety of fields from bioenergetics and biophysics to chemistry, physics and nanoscience. This review summarizes the latest findings about the two motors of F(o)F(1)-ATP synthase as well as a brief historical background.  相似文献   
999.
Autophagy is an intracellular degradation system in eukaryotic cells that occurs at a basal level. It can also be induced in response to environmental signals including nutrients, hormones, microbial pathogens, and growth factors, although the mechanism is not known in detail. We previously demonstrated that excessive autophagy is induced within pancreatic acinar cells deficient in Spink3, which is a trypsin inhibitor. SPINK1, the human homolog of murine Spink3, has structural similarity to epidermal growth factor (EGF), and can bind and stimulate the EGF receptor (EGFR). To analyze the role of the EGFR in pancreatic development, in the regulation of autophagy in pancreatic acinar cells, and in cerulein-induced pancreatitis, we generated and examined acinar cell-specific Egfr-deficient (Egfr−/−) mice. Egfr−/− mice showed no abnormalities in pancreatic development, induction of autophagy, or cerulein-induced pancreatitis, suggesting that Egfr is dispensable for autophagy regulation in pancreatic acinar cells.  相似文献   
1000.
In Lafora disease (LD), the deficiency of either EPM2A or NHLRC1, the genes encoding the phosphatase laforin and E3 ligase, respectively, causes massive accumulation of less-branched glycogen inclusions, known as Lafora bodies, also called polyglucosan bodies (PBs), in several types of cells including neurons. The biochemical mechanism underlying the PB accumulation, however, remains undefined. We recently demonstrated that laforin is a phosphatase of muscle glycogen synthase (GS1) in PBs, and that laforin recruits malin, together reducing PBs. We show here that accomplishment of PB degradation requires a protein assembly consisting of at least four key enzymes: laforin and malin in a complex, and the glycogenolytic enzymes, glycogen debranching enzyme 1 (AGL1) and brain isoform glycogen phosphorylase (GPBB). Once GS1-synthesized polyglucosan accumulates into PBs, laforin recruits malin to the PBs where laforin dephosphorylates, and malin degrades the GS1 in concert with GPBB and AGL1, resulting in a breakdown of polyglucosan. Without fountional laforin–malin complex assembled on PBs, GPBB and AGL1 together are unable to efficiently breakdown polyglucosan. All these events take place on PBs and in cytoplasm. Deficiency of each of the four enzymes causes PB accumulation in the cytoplasm of affected cells. Demonstration of the molecular mechanisms underlying PB degradation lays a substantial biochemical foundation that may lead to understanding how PB metabolizes and why mutations of either EPM2A or NHLRC1 in humans cause LD. Mutations in AGL1 or GPBB may cause diseases related to PB accumulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号