首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1544篇
  免费   90篇
  2022年   15篇
  2021年   24篇
  2020年   12篇
  2019年   12篇
  2018年   29篇
  2017年   14篇
  2016年   35篇
  2015年   47篇
  2014年   43篇
  2013年   82篇
  2012年   87篇
  2011年   78篇
  2010年   46篇
  2009年   47篇
  2008年   72篇
  2007年   67篇
  2006年   58篇
  2005年   82篇
  2004年   82篇
  2003年   73篇
  2002年   45篇
  2001年   66篇
  2000年   52篇
  1999年   45篇
  1998年   21篇
  1997年   13篇
  1996年   19篇
  1995年   11篇
  1994年   15篇
  1993年   14篇
  1992年   27篇
  1991年   25篇
  1990年   18篇
  1989年   24篇
  1988年   29篇
  1987年   24篇
  1986年   22篇
  1985年   17篇
  1984年   12篇
  1983年   17篇
  1982年   11篇
  1981年   7篇
  1980年   14篇
  1979年   14篇
  1978年   6篇
  1977年   8篇
  1976年   6篇
  1973年   6篇
  1971年   9篇
  1966年   5篇
排序方式: 共有1634条查询结果,搜索用时 31 毫秒
171.
172.

Background

We previously developed the DBRF-MEGN (difference-based regulation finding-minimum equivalent gene network) method, which deduces the most parsimonious signed directed graphs (SDGs) consistent with expression profiles of single-gene deletion mutants. However, until the present study, we have not presented the details of the method's algorithm or a proof of the algorithm.

Results

We describe in detail the algorithm of the DBRF-MEGN method and prove that the algorithm deduces all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants.

Conclusions

The DBRF-MEGN method provides all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants.  相似文献   
173.
In order to create trees in which cellulose, the most abundant component in biomass, can be enzymatically hydrolyzed highly for the production of bioethanol, we examined the saccharification of xylem from several transgenic poplars, each overexpressing either xyloglucanase, cellulase, xylanase, or galactanase. The level of cellulose degradation achieved by a cellulase preparation was markedly greater in the xylem overexpressing xyloglucanase and much greater in the xylems overexpressing xylanase and cellulase than in the xylem of the wild-type plant. Although a high degree of degradation occurred in all xylems at all loci, the crystalline region of the cellulose microfibrUs was highly degraded in the xylem overexpressing xyloglucanase. Since the complex between microfibrils and xyloglucans could be one region that is particularly resistant to cellulose degradation, loosening xyloglucan could facilitate the enzymatic hydrolysis of cellulose in wood.  相似文献   
174.
The Bhas promotion assay is a cell culture transformation assay designed as a sensitive and economical method for detecting the tumour-promoting activities of chemicals. In order to validate the transferability and applicability of this assay, an inter-laboratory collaborative study was conducted with the participation of 14 laboratories. After confirmation that these laboratories could obtain positive results with two tumour promoters, 12-O-tetradecanoylphorbol-13-acetate (TPA) and lithocholic acid (LCA), 12 coded chemicals were assayed. Each chemical was tested in four laboratories. For eight chemicals, all four laboratories obtained consistent results, and for two of the other four chemicals, only one of the four laboratories showed inconsistent results. Thus, the rate of consistency was high. During the study, several issues were raised, each of which were analysed step-by-step, leading to revision of the protocol of the original assay. Among these issues were the importance of careful maintenance of mother cultures and the adoption of test concentrations for toxic chemicals. In addition, it is suggested that three different types of chemicals show positive promoting activity in the assay. Those designated as T-type induced extreme growth enhancement, and included TPA, mezerein, PDD and insulin. LCA and okadaic acid belonged to the L-type category, in which transformed foci were induced at concentrations showing growth-inhibition. In contrast, M-type chemicals, progesterone, catechol and sodium saccharin, induced foci at concentrations with little or slight growth inhibition. The fact that different types of chemicals similarly induce transformed foci in the Bhas promotion assay may provide clues for elucidating mechanisms of tumour promotion.  相似文献   
175.
Diverse cellular processes such as autophagic protein degradation require phosphoinositide signaling in eukaryotic cells. In the methylotrophic yeast Pichia pastoris, peroxisomes can be selectively degraded via two types of pexophagic pathways, macropexophagy and micropexophagy. Both involve membrane fusion events at the vacuolar surface that are characterized by internalization of the boundary domain of the fusion complex, indicating that fusion occurs at the vertex. Here, we show that PpAtg24, a molecule with a phosphatidylinositol 3-phosphate-binding module (PX domain) that is indispensable for pexophagy, functions in membrane fusion at the vacuolar surface. CFP-tagged PpAtg24 localized to the vertex and boundary region of the pexophagosome-vacuole fusion complex during macropexophagy. Depletion of PpAtg24 resulted in the blockage of macropexophagy after pexophagosome formation and before the fusion stage. These and other results suggest that PpAtg24 is involved in the spatiotemporal regulation of membrane fusion at the vacuolar surface during pexophagy via binding to phosphatidylinositol 3-phosphate, rather than the previously suggested function in formation of the pexophagosome.  相似文献   
176.
Superoxide dismutase (SOD) is supposed to be an effective agent for neutrophil-mediated inflammation in the area of critical medicine. We investigated the involvement of SOD in the regulation of neutrophil apoptosis. Exogenously added SOD effectively induced neutrophil apoptosis, and the fluorescence patterns determined using annexin-V and the 7-AAD were similar to those seen in Fas-mediated neutrophil apoptosis. Neutrophils are short-lived leukocytes that need to be removed safely by apoptosis. The clearance of apoptotic neutrophils from sites of inflammation is a crucial determinant of the resolution of inflammation. Catalase inhibited the neutrophil apoptosis and caspase-3 activation. Spontaneous apoptosis, hydrogen peroxide and anti-Fas antibody-induced apoptosis of neutrophils were accelerated in Down's syndrome patients, in whom the SOD gene is overexpressed. Hydrogen peroxide was thought to be a possible major mediator of ROS-induced neutrophil apoptosis in caspase-dependent manner. Neutrophil apoptosis represents a crucial step in the mechanism governing the resolution of inflammation and has been suggested as a possible target for the control of neutrophil-mediated tissue injury. SOD may be a potential inhibitory mediator of neutrophil-mediated inflammation.  相似文献   
177.
Regulation of LSD1 histone demethylase activity by its associated factors   总被引:11,自引:0,他引:11  
Shi YJ  Matson C  Lan F  Iwase S  Baba T  Shi Y 《Molecular cell》2005,19(6):857-864
LSD1 is a recently identified human lysine (K)-specific histone demethylase. LSD1 is associated with HDAC1/2; CoREST, a SANT domain-containing corepressor; and BHC80, a PHD domain-containing protein, among others. We show that CoREST endows LSD1 with the ability to demethylate nucleosomal substrates and that it protects LSD1 from proteasomal degradation in vivo. We find hyperacetylated nucleosomes less susceptible to CoREST/LSD1-mediated demethylation, suggesting that hypoacetylated nucleosomes may be the preferred physiological substrates. This raises the possibility that histone deacetylases and LSD1 may collaborate to generate a repressive chromatin environment. Consistent with this model, TSA treatment results in derepression of LSD1 target genes. While CoREST positively regulates LSD1 function, BHC80 inhibits CoREST/LSD1-mediated demethylation in vitro and may therefore confer negative regulation. Taken together, these findings suggest that LSD1-mediated histone demethylation is regulated dynamically in vivo. This is expected to have profound effects on gene expression under both physiological and pathological conditions.  相似文献   
178.
179.
Protein 4.1 families have recently been established as potential organizers of an adherens system. In the adult mouse testis, protein 4.1G (4.1G) localized as a line pattern in both basal and adluminal compartments of the seminiferous tubules, attaching regions of germ cells and Sertoli cells. By double staining for 4.1G and F-actin, their localizations were shown to be different, indicating that 4.1G was localized in a region other than the basal and apical ectoplasmic specializations, which formed the Sertoli–Sertoli cell junction and Sertoli–spermatid junction, respectively. By electron microscopy, immunoreactive products were seen exclusively on the cell membranes of Sertoli cells, attaching to the various differentiating germ cells. The immunolocalization of cadherin was identical to that of 4.1G, supporting the idea that 4.1G may be functionally interconnected with adhesion molecules. In an experimental mouse model of cadmium treatment, in which tight and adherens junctions of seminiferous tubules were disrupted, the 4.1G immunostaining in the seminiferous tubules was dramatically decreased. These results indicate that 4.1G may have a basic adhesive function between Sertoli cells and germ cells from the side of Sertoli cells.  相似文献   
180.
Protein 4.1 G localizes in rodent microglia   总被引:2,自引:2,他引:0  
Although it was reported that protein 4.1 G, a cytoskeletal protein characterized by its general expression in the body, interacts with some signal transduction molecules in the central nervous system (CNS), its distribution and significance in vivo remained to be elucidated. In the present study, we have identified 4.1 G-positive cells in the rodent CNS, and demonstrated its immunolocalization in the developing mouse CNS. In the rodent CNS, 4.1 G was colocalized with markers for microglia, such as CD45, OX-42 and ionized calcium-binding adapter molecule 1 (Iba1), but not with markers for neuronal or other glial cells. Additionally, colocalization of 4.1 G and A1 adenosine receptor was observed in the mouse cerebrum. In a mixed glial culture, most OX-42-positive microglia were positive for 4.1 G, and 4.1 G isoforms of the same molecular weight as in the rat brain were expressed in cultured microglia, where 4.1 G mRNA was detected by RT-PCR. In the developing mouse cerebral cortex, 4.1 G was detected in immature microglia, which were positive for Iba1. These results indicate that 4.1 G in the CNS is mainly distributed in microglia in vivo. Considering the interactions between 4.1 G and the signal transduction molecules, putative roles have been propsed for 4.1 G in microglial functions in the CNS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号