首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   7篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   10篇
  2019年   11篇
  2018年   8篇
  2017年   8篇
  2016年   4篇
  2015年   9篇
  2014年   8篇
  2013年   18篇
  2012年   14篇
  2011年   15篇
  2010年   7篇
  2009年   7篇
  2008年   5篇
  2007年   7篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1977年   1篇
排序方式: 共有158条查询结果,搜索用时 24 毫秒
131.
132.

Background

Inhaled iloprost potentially improves hemodynamics and gas exchange in patients with chronic obstructive pulmonary disease (COPD) and secondary pulmonary hypertension (PH).

Objectives

To evaluate acute effects of aerosolized iloprost in patients with COPD-associated PH.

Methods

A randomized, double blind, crossover study was conducted in 16 COPD patients with invasively confirmed PH in a single tertiary care center. Each patient received a single dose of 10 µg iloprost (low dose), 20 µg iloprost (high dose) and placebo during distinct study-visits. The primary end-point of the study was exercise capacity as assessed by the six minute walking distance.

Results

Both iloprost doses failed to improve six-minute walking distance (p = 0.36). Low dose iloprost (estimated difference of the means −1.0%, p = 0.035) as well as high dose iloprost (−2.2%, p<0.001) significantly impaired oxygenation at rest. Peak oxygen consumption and carbon dioxide production differed significantly over the three study days (p = 0.002 and p = 0.003, accordingly). As compared to placebo, low dose iloprost was associated with reduced peak oxygen consumption (−76 ml/min, p = 0.002), elevated partial pressure of carbon dioxide (0.27 kPa, p = 0.040) and impaired ventilation during exercise (−3.0l/min, p<0.001).

Conclusions

Improvement of the exercise capacity after iloprost inhalation in patients with COPD-associated mild to moderate PH is very unlikely.

Trial Registration

Controlled-Trials.com ISRCTN61661881  相似文献   
133.
Carvedilol is an antihypertensive drug available as a racemic mixture. (?)‐(S)‐carvedilol is responsible for the nonselective β‐blocker activity but both enantiomers present similar activity on α1‐adrenergic receptor. To our knowledge, this is the first study of carvedilol enantiomers in human plasma using a chiral stationary phase column and liquid chromatography with tandem mass spectrometry. The method involves plasma extraction with diisopropyl ether using metoprolol as internal standard and direct separation of the carvedilol enantiomers on a Chirobiotic T® (Teicoplanin) column. Protonated ions [M + H]+ and their respective ion products were monitored at transitions of 407 > 100 for the carvedilol enantiomers and 268 > 116 for the internal standard. The quantification limit was 0.2 ng ml?1 for both enantiomers in plasma. The method was applied to study enantioselectivity in the pharmacokinetics of carvedilol administered as a single dose of 25 mg to a hypertensive patient. The results showed a higher plasma concentration of (+)‐(R)‐carvedilol (AUC0–∞ 205.52 vs. 82.61 (ng h) ml?1), with an enantiomer ratio of 2.48. Chirality, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
134.
The chemical ecology and biotechnological potential of metabolites from endophytic and rhizosphere fungi are receiving much attention. A collection of 17 sugarcane-derived fungi were identified and assessed by PCR for the presence of polyketide synthase (PKS) genes. The fungi were all various genera of ascomycetes, the genomes of which encoded 36 putative PKS sequences, 26 shared sequence homology with β-ketoacyl synthase domains, while 10 sequences showed homology to known fungal C-methyltransferase domains. A neighbour–joining phylogenetic analysis of the translated sequences could group the domains into previously established chemistry-based clades that represented non-reducing, partially reducing and highly reducing fungal PKSs. We observed that, in many cases, the membership of each clade also reflected the taxonomy of the fungal isolates. The functional assignment of the domains was further confirmed by in silico secondary and tertiary protein structure predictions. This genome mining study reveals, for the first time, the genetic potential of specific taxonomic groups of sugarcane-derived fungi to produce specific types of polyketides. Future work will focus on isolating these compounds with a view to understanding their chemical ecology and likely biotechnological potential.  相似文献   
135.
The widespread use of aluminum (Al) provides easy exposure of humans to the metal and its accumulation remains a potential problem. In vivo and in vitro assays have associated Al overload with anemia. To better understand the mechanisms by which Al affects human erythrocytes, morphological and biochemical changes were analyzed after long-term treatment using an in vitro model. The appearance of erythrocytes with abnormal shapes suggested metal interaction with cell surface, supported by the fact that high amounts of Al attached to cell membrane. Long-term incubation of human erythrocytes with Al induced signs of premature erythrocyte death (eryptosis), such as phosphatidylserine externalization, increased intracellular calcium, and band 3 degradation. Signs of oxidative stress, such as significant increase in reactive oxygen species in parallel with decrease in the amount of reduced glutathione, were also observed. These oxidative effects were completely prevented by the antioxidant N-acetylcysteine. Interestingly, erythrocytes were also protected from the prooxidative action of Al by the presence of erythropoietin (EPO). In conclusion, results provide evidence that chronic Al exposure may lead to biochemical and morphological alterations similar to those shown in eryptosis induced by oxidant compounds in human erythrocytes. The antieryptotic effect of EPO may contribute to enhance the knowledge of its physiological role on erythroid cells. Irrespective of the antioxidant mechanism, this property of EPO, shown in this model of Al exposure, let us suggest potential benefits by EPO treatment of patients with anemia associated to altered redox environment.  相似文献   
136.
Brucella suis is a dangerous biological warfare agent already used for military purposes. This bacteria cause brucellosis, a zoonosis highly infective and difficult to fight. An important selective target for chemotherapy against this disease is nucleoside hydrolase (NH), an enzyme still not found in mammals. We present here the first three-dimensional structure of B. suis NH (BsNH) and propose this enzyme as a molecular target to the drug design in the fight against brucellosis. In addition, we performed molecular docking studies, aiming to analyze the three-dimensional positioning of nine known inhibitors of Chritidia fasciculata NH (CfNH) in the active sites of BsNH and CfNH. We also analyzed the main interactions of some of these compounds inside the active site of BsNH and the relevant factors to biological activity. These results, together with further molecular dynamics (MD) simulations, pointed out to the most promising compound as lead for the design of potential inhibitors of BsNH. Most of the docking and MD results corroborated to each other and the docking results also suggested a good correlation with experimental data.  相似文献   
137.
The TNF‐α (tumour necrosis factor) affects a wide range of biological activities, such as cell proliferation and apoptosis. Cell life or death responses to this cytokine might depend on cell conditions. This study focused on the modulation of factors that would affect the sensitivity of erythroid‐differentiated cells to TNF‐α. Hemin‐differentiated K562 cells showed higher sensitivity to TNF‐induced apoptosis than undifferentiated cells. At the same time, hemin‐induced erythroid differentiation reduced c‐FLIP (cellular FLICE‐inhibitory protein) expression. However, this negative effect was prevented by prior treatment with Epo (erythropoietin), which allowed the cell line to maintain c‐FLIP levels. On the other hand, erythroid‐differentiated UT‐7 cells – dependent on Epo for survival – showed resistance to TNF‐α pro‐apoptotic action. Only after the inhibition of PI3K (phosphatidylinositol‐3 kinase)‐mediated pathways, which was accompanied by negative c‐FLIP modulation and increased erythroid differentiation, were UT‐7 cells sensitive to TNF‐α‐triggered apoptosis. In summary, erythroid differentiation might deregulate the balance between growth promotion and death signals induced by TNF‐α, depending on cell type and environmental conditions. The role of c‐FLIP seemed to be critical in the protection of erythroid‐differentiated cells from apoptosis or in the determination of their sensitivity to TNF‐mediated programmed cell death. Epo, which for the first time was found to be involved in the prevention of c‐FLIP down‐regulation, proved to have an anti‐apoptotic effect against the pro‐inflammatory factor. The identification of signals related to cell life/death switching would have significant implications in the control of proliferative diseases and would contribute to the understanding of mechanisms underlying the anaemia associated with inflammatory processes.  相似文献   
138.
Traditional imaging with one-photon confocal microscopy and organic fluorophores poses several challenges for the visualization of vascular tissue, including autofluorescence, fluorophore crosstalk, and photobleaching. We studied human coronary arteries (HCAs) and mouse aortas with a modified immunohistochemical (IHC) "en face" method using quantum dot (Qdot) bioconjugates and two-photon excitation laser scanning microscopy (TPELSM). We demonstrated the feasibility of multilabeling intimal structures by exciting multicolored Qdots with only one laser wavelength (750 nm). Detailed cell structures, such as the granular appearance of von Willebrand factor (VWF) and the subcellular distribution of endothelial nitric oxide synthase, were visualized using green dots (525 nm), even when the emission maximum of these Qdots overlapped that of tissue autofluorescence (510-520 nm). In addition, sensitive fluorescence quantification of vascular cell adhesion molecule 1 expression at areas of varying hemodynamics (intercostal branches vs. nonbranching areas) was performed in normal C57Bl/6 mice. Finally, we took advantage of the photostability of Qdots and the inherent three-dimensional (3D) resolution of TPELSM to obtain large z-stack series without photobleaching. This innovative en face method allowed simple multicolor profiling, highly sensitive fluorescence quantitation, and 3D visualization of the vascular endothelium with excellent spatial resolution. This is a promising technique to define the spatial and temporal interactions of endothelial inflammatory markers and quantify the effects of different interventions on the endothelium.  相似文献   
139.
Although xylose is a major constituent of lignocellulosic feedstock and the second most abundant sugar in nature, only 22% of 3,152 screened bacterial isolates showed significant growth in xylose in 24 h. Of those 684, only 24% accumulated polyhydroxyalkanoates after 72 h. A mangrove isolate, identified as Bacillus sp. MA3.3, yielded the best results in literature thus far for Gram-positive strains in experiments with glucose and xylose as the sole carbon source. When glucose or xylose were supplied, poly-3-hydroxybutyrate (PHB) contents of cell dry weight were, respectively, 62 and 64%, PHB yield 0.25 and 0.24 g g−1 and PHB productivity (PPHB) 0.10 and 0.06 g l−1 h−1. This 40% PPHB difference may be related to the theoretical ATP production per 3-hydroxybutyrate (3HB) monomer calculated as 3 mol mol−1 for xylose, less than half of the ATP/3HB produced from glucose (7 mol mol−1). In PHB production using sugar mixtures, all parameters were strongly reduced due to carbon catabolite repression. PHB production using Gram-positive strains is particularly interesting for medical applications because these bacteria do not produce lipopolysaccharide endotoxins which can induce immunogenic reactions. Moreover, the combination of inexpensive substrates and products of more value may lead to the economical sustainability of industrial PHB production.  相似文献   
140.
Erythropoietin (Epo) is known to have a significant role in tissues outside the hematopoietic system. In this work, we investigated the function of Epo in cells of neuronal origin subjected to differentiation. Treatment of SH‐SY5Y cells with all‐trans‐retinoic acid (atRA) generated differentiated neuron‐like cells, observed by increased expression of neuronal markers and morphological changes. Exposure of undifferentiated cells to proapoptotic stimuli such as staurosporine, TNF‐α, or hypoxia, significantly increased programmed cell death, which was prevented by previous treatment with Epo. In contrast, atRA‐differentiated cultures showed cell resistance to apoptosis. No additional effect of Epo was detected in previously differentiated cells. The inhibition of the PI3K/Akt pathway by Ly294002 abrogated the protective effects induced by either Epo or atRA. The effect of atRA was mediated by an increased expression of Bcl‐2 whereas the Epo treatment upregulated not only Bcl‐2 but also Bcl‐xL. This upregulation by Epo was not detected in atRA‐differentiated cells, thus confirming the lack of the protective effect of Epo. As expected, assays with AG490, an inhibitor of Jak2, blocked the Epo action only in undifferentiated cells. This reduced neuroprotective function of Epo on SH‐SY5Y differentiated cells could be explained at least in part by downregulation of the Epo receptor expression, which was observed in atRA‐differentiated cells. This study shows differential cellular protection induced by Epo at two stages of SH‐SY5Y differentiation. The results allow us to suggest that this differential cell behavior can be ascribed to the interaction between atRA and the signaling pathways mediated by Epo. J. Cell. Biochem. 110: 151–161, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号