首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6163篇
  免费   405篇
  国内免费   425篇
  2024年   7篇
  2023年   57篇
  2022年   172篇
  2021年   311篇
  2020年   193篇
  2019年   253篇
  2018年   231篇
  2017年   188篇
  2016年   254篇
  2015年   385篇
  2014年   445篇
  2013年   470篇
  2012年   544篇
  2011年   519篇
  2010年   340篇
  2009年   279篇
  2008年   331篇
  2007年   289篇
  2006年   259篇
  2005年   226篇
  2004年   191篇
  2003年   148篇
  2002年   131篇
  2001年   98篇
  2000年   80篇
  1999年   85篇
  1998年   43篇
  1997年   58篇
  1996年   58篇
  1995年   45篇
  1994年   32篇
  1993年   35篇
  1992年   48篇
  1991年   42篇
  1990年   28篇
  1989年   21篇
  1988年   12篇
  1987年   25篇
  1986年   16篇
  1985年   15篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1977年   2篇
  1973年   2篇
  1968年   1篇
  1967年   1篇
  1955年   2篇
  1954年   1篇
排序方式: 共有6993条查询结果,搜索用时 31 毫秒
951.
The effects of plant-derived chemicals (volatiles) on the attraction of the Spodoptera litura moth to sex pheromones were evaluated using an electroantennogram (EAG). Neuronal responses of male moths to sex pheromone mixtures (SPs) (a 9:1 mixture of synthetic (9Z,11E)-9,11-tetraddecadienyl acetate (Z9E11-14:OAc) and (9Z,12E)-9,12-tetradecadienyl acetate (Z9E12-14:OAc)) and to SPs mixtures with eight plant volatiles (benzaldehyde, (E)-β-caryophyllene, phenylacetaldehyde, 2,6-nonadienal, benzyl alcohol, racemic linalool, longifolene, and (E)-β-ocimene) were also measured. Then, wind tunnels and field trapping bioassays were conducted to determine the influence of plant volatiles on S. litura moth behavioral responses to SPs. The results indicated that benzaldehyde, phenylacetaldehyde, and benzyl alcohol significantly enhanced, and longifolene, (E)-β-caryophyllene, and (E)-β-ocimene had no significant effect on the attractions to SPs, whereas racemic linalool significantly decreased the attraction of male S. litura moths to SPs throughout the olfactory pathway. 2,6-Nonadienal significantly enhanced olfactory responses, but had no significant effect on output behavior. These findings provide foundations in utilization of plant volatiles and sex pheromones to manage the pest and other agricultural pests.  相似文献   
952.
Coleosporium species cause pine needle rust. Most species have heteromacrocyclic life cycles, and 12 species use Pinus densiflora as aecial hosts. To understand the biology of rust fungi and develop better methods for controlling rust diseases, it is necessary to clarify that which Coleosporium species affect pine trees. However, Coleosporium on pine trees have rarely been identified at the species level because of their morphological similarities. We used polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) to clarify the species composition, abundance, and distribution of Coleosporium in a P. densiflora forest. We surveyed a site where several Coleosporium species might complete their life cycles. PCR-RFLP revealed four species on the pines: C. asterum, C. clematidis-apiifoliae, C. lycopodis, and C. phellodendri. Coleosporium phellodendri was distributed throughout the forest and was the most abundant. Aecia of C. phellodendri formed mainly on 2-y-old needles. The abundance and distribution of C. phellodendri appeared to be affected by the longer effective dispersal range of basidiospores and the existence of abundant inoculum sources. The age of leaves where C. phellodendri form aecia mainly was thought to be influenced by the characteristic life cycle, with aecial formation requiring 2?y after basidiospore infection.  相似文献   
953.
954.
955.
956.
957.
Abscisic acid (ABA) is the most important stress hormone in the regulation of plant adaptation to drought. Owing to the chemical instability and rapid catabolism of ABA, ABA mimic 1 (AM1) is frequently applied to enhance drought resistance in plants, but the molecular mechanisms governed by AM1 on improving drought resistance in Brassica napus are not entirely understood. To investigate the effect of AM1 on drought resistance at the physiological and molecular levels, exogenous ABA and AM1 were applied to the leaves of two B. napus genotypes (Q2 and Qinyou 8) given progressive drought stress. The results showed that the leaves of 50 µM ABA- and AM1-treated plants shared over 60% differential expressed genes and 90% of the enriched functional pathways in Qinyou 8 under drought. AM1 affected the expression of the genes involved in ABA signaling; they down-regulated pyrabactin resistance/PYR1-like (PYR/PYLs), up-regulated type 2C protein phosphatases (PP2Cs), partially up-regulated sucrose non-fermenting 1-related protein kinase 2s (SnRK2s), and down-regulated ABA-responsive element (ABRE)-binding protein/ABRE-binding factors (AREB/ABFs). Additionally, AM1 treatment repressed the expression of photosynthesis-related genes, those mainly associated with the light reaction process. Moreover, AM1 decreased the stomatal conductance, the net photosynthetic rate, and the transpiration rate, but increased the relative water content in leaves and increased survival rates of two genotypes under drought stress. Our findings suggest that AM1 has a potential to improve drought resistance in B. napus by triggering molecular and physiological responses to reduce water loss and impair growth, leading to increased survival rates.  相似文献   
958.
IR68 and Dular rice cultivars were grown under ambient, 13.0 (simulating 20% ozone depletion) and 19.1 (simulating 40% ozone depletion) kJ m-2 day-1 of biologically effective ultraviolet-B (UV-BBE) for 4 weeks. Plant height and leaf area were significantly reduced by supplemental UV-BBE radiation. Greater reduction in leaf area than of plant height was observed. A decrease in indole-3-acetic acid (IAA) content and increase in peroxidase and IAA oxidase activities of UV-B treated plants in both cultivars were observed compared with ambient control. Calmodulin content also decreased after plants were treated with high supplemental UV-B for two weeks and medium UV-B treatment for four weeks. The results indicated that peroxidase and IAA oxidase activities in rice leaves were stimulated by supplemental UV-B, resulting in the destruction of IAA which in turn may cause inhibition of rice leaf growth. Although the mechanism is unclear, calmodulin is most likely involved in leaf growth.  相似文献   
959.
芽前胡的化学成分   总被引:3,自引:0,他引:3  
从成都产芽前胡Peucedanum turgeniifolium Wolff.中分离鉴定了12个化合物,分别为香豆素化合物佛手柑内酯(bergapten)(1),异欧芹属乙素(isoimperatorin)(2),(±)diisovaleryl-cis-khellactone(3),(±)dihydrosamidin(4),(±)peuformosin(5),(±)cis-khellactone(6),8-(2’,3’-二羟基,3’-甲基-丁基)-伞形花内酯[8-(2’3’-dihydroxy,3’-methyl-butyl)-umbelliferone](7),(±)selinidin(8),turgeniifolin A(9)以及非香豆素化合物硬脂酸(stearic acid),β-谷甾醇(β-sitosterol),甘露醇(d-mannitol)。  相似文献   
960.
Nagamatsu  Dai  Miura  Osamu 《Plant Ecology》1997,133(2):191-200
To clarify vegetation-landform relationships, we examined the soil disturbance regime in relation to micro-scale landforms and its effects on vegetation structure in a mixed temperate forest in a hilly area in northeastern Japan. Soil profiles in each micro-landform unit were surveyed to elucidate the effects of soil disturbances on the vegetation structure. The hilly area studied consisted of an upper and a lower hillslope area divided by an erosion front, which differed considerably with respect to vegetation structure. In the upper hillslope area, canopy was closed and dominated by Pinus densiflora and Quercus serrata. In the lower hillslope area, on the other hand, canopy was less closed and shrubs, ferns, and herbaceous species were abundant. The species composition changed gradually from the crest slope to the upper sideslope to the head hollow in the upper hillslope area. However, micro-landforms in the lower hillslope area seemed to have less effect on the vegetation structure. This may be because the lower hillslope area, in contrast to the upper hillslope area, has suffered from soil disturbances, and hence shrubs, ferns, and herbs have developed irrespective of micro-landforms. Thus, vegetation can be quite different depending on whether or not sites have suffered from soil disturbance. In disturbed stands, it is suggested that the frequency and intensity of disturbance are more important for species composition than the type of soil disturbance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号