首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   13篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   9篇
  2019年   7篇
  2018年   5篇
  2017年   11篇
  2016年   12篇
  2015年   14篇
  2014年   10篇
  2013年   15篇
  2012年   20篇
  2011年   17篇
  2010年   8篇
  2009年   3篇
  2008年   6篇
  2007年   9篇
  2006年   9篇
  2005年   6篇
  2004年   7篇
  2003年   5篇
  2002年   7篇
  2000年   1篇
  1999年   1篇
  1989年   1篇
  1973年   1篇
排序方式: 共有194条查询结果,搜索用时 46 毫秒
101.
102.
In the family-B DNA polymerase of bacteriophage RB69, the conserved aromatic palm-subdomain residues Tyr391 and Tyr619 interact with the last primer-template base-pair. Tyr619 interacts via a water-mediated hydrogen bond with the phosphate of the terminal primer nucleotide. The main-chain amide of Tyr391 interacts with the corresponding template nucleotide. A hydrogen bond has been postulated between Tyr391 and the hydroxyl group of Tyr567, a residue that plays a key role in base discrimination. This hydrogen bond may be crucial for forcing an infrequent Tyr567 rotamer conformation and, when the bond is removed, may influence fidelity. We investigated the roles of these residues in replication fidelity in vivo employing phage T4 rII reversion assays and an rI forward assay. Tyr391 was replaced by Phe, Met and Ala, and Tyr619 by Phe. The Y391A mutant, reported previously to decrease polymerase affinity for incoming nucleotides, was unable to support DNA replication in vivo, so we used an in vitro fidelity assay. Tyr391F/M replacements affect fidelity only slightly, implying that the bond with Tyr567 is not essential for fidelity. The Y391A enzyme has no mutator phenotype in vitro. The Y619F mutant displays a complex profile of impacts on fidelity but has almost the same mutational spectrum as the parental enzyme. The Y619F mutant displays reduced DNA binding, processivity, and exonuclease activity on single-stranded DNA and double-stranded DNA substrates. The Y619F substitution would disrupt the hydrogen bond network at the primer terminus and may affect the alignment of the 3' primer terminus at the polymerase active site, slowing chemistry and overall DNA synthesis.  相似文献   
103.
104.
The initiation of chromosomal replication occurs only once during the cell cycle in both prokaryotes and eukaryotes. Initiation of chromosome replication is the first and tightly controlled step of a DNA synthesis. Bacterial chromosome replication is initiated at a single origin, oriC, by the initiator protein DnaA, which specifically interacts with 9-bp non-palindromic sequences (DnaA boxes) at oriC. In Escherichia coli, a model organism used to study the mechanism of DNA replication and its regulation, the control of initiation relies on a reduction of the availability and/or activity of the two key elements, DnaA and the oriC region. This review summarizes recent research into the regulatory mechanisms of the initiation of chromosomal replication in bacteria, with emphasis on organisms other than E. coli.  相似文献   
105.
106.
Sixteen female piglets (58 d of age, 16.8 ± 0.8 kg body weight [BW]) were assigned to two groups (n = 8) and received until day 100 of age (50.3 ± 1.2 kg BW) ad libitum either a diet with a standard (diet C) or low (diet L) total phosphorus (P) content (5.38 and 4.23 g/kg, respectively). Diet C was supplemented with mineral P (1.15 g/kg) and did not contain microbial phytase. Diet L did not contain any inorganic P but 750 FTU/kg of microbial phytase. Despite these treatments, both diets were composed with the same ingredients. Body mineralisation of each gilt was assessed by determining the bone mineral content (BMC), area bone mineral density (BMD) by the dual-energy X-ray absorptiometry (DXA) at days 58, 72, 86 and 100 of age. Feeding diet L caused a higher P digestibility (p = 0.008) measured from days 72 to 86 of age and at 100 days of age a higher BMC and BMD (p ≤ 0.01). Furthermore, the gilts of group L deposited more minerals in the body than control pigs (by 2.4 g/d, p = 0.008). It was found that BMD and BMC were positively correlated with body lean mass and digestible P intake. The results indicated that, even for very young pigs, the addition of microbial phytase instead of inorganic P increases the amount of digestible P covering the requirements of piglets for proper bone mineralisation. Furthermore, it was proved that the DXA method can be successfully applied to measure body fat and lean mass contents as well as bone mineralisation of growing pigs using the same animals.  相似文献   
107.
This study was carried out on 24 gilts (♀ Polish Large White × ♂ Danish Landrace) grown with body weight (BW) of 60 to 105 kg. The pigs were fed diets designed on the basis of a standard diet (appropriate for age and BW of pigs) where a part of the energy content was replaced by different fat supplements: linseed oil in Diet L, rapeseed oil in Diet R and fish oil in Diet F (6 gilts per dietary treatment). The fat supplements were sources of specific fatty acids (FA): in Diet L α-linolenic acid (C18:3 n?3, ALA); in Diet R linoleic acid (C18:2 n?6, LA) and in Diet F eicosapentaenoic acid (C20:5 n?3, EPA), docosapentaenoic acid (C22:5 n?3, DPA) and docosahexaenoic acid (C22:6 n?3, DHA). The protein, fat and total FA contents in the body did not differ among groups of pigs. The enhanced total intake of LA and ALA by pigs caused an increased deposition of these FA in the body (p < 0.01) and an increased potential body pool of these acids for further metabolism/conversions. The conversion efficiency of LA and ALA from the feed to the pig’s body differed among groups (p < 0.01) and ranged from 64.4% to 67.2% and from 69.4% to 81.7%, respectively. In Groups L and R, the level of de novo synthesis of long-chain polyunsaturated FA was higher than in Group F. From the results, it can be concluded that the efficiency of deposition is greater for omega-3 FA than for omega-6 FA and depends on their dietary amount. The level of LA and ALA intake influences not only their deposition in the body but also the end products of the omega-3 and omega-6 pathways.  相似文献   
108.
In this study, mass spectrometry was used to explore the canine tear proteome. Tear samples were obtained from six healthy dogs, and one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (1D SDS-PAGE) was used as a first step to separate intact proteins into 17 bands. Each fraction was then trypsin digested and analysed by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS) to characterize the protein components in each fraction. In total, 125 tear proteins were identified, with MCA (Major Canine Allergen), Serum albumin, UPF0557 protein C10orf119 homolog, Collagen alpha-2(I) chain, Tyrosine -protein kinase Fer, Keratine type II cytoskeletal, Beta-crystallin B2, Interleukin-6 and Desmin occuring as the most confident ones with the highest scores. The results showed that the proteomic strategy used in this study was successful in the analysis of the dog tear proteome. To the best of our knowledge, this study is the first to report the comprehensive proteome profile of tears from healthy dogs by 1D SDS PAGE and MALDI-TOF. Data are available via ProteomeXchange with identifier PXD003124.  相似文献   
109.
Attachment proteins from the surface of eukaryotic cells, bacteria and viruses are critical receptors in cell adhesion or signaling and are primary targets for the development of vaccines and therapeutic antibodies. It is proposed that the ligand-binding pocket in receptor proteins can shift between inactive and active conformations with weak and strong ligand-binding capability, respectively. Here, using monoclonal antibodies against a vaccine target protein - fimbrial adhesin FimH of uropathogenic Escherichia coli, we demonstrate that unusually strong receptor inhibition can be achieved by antibody that binds within the binding pocket and displaces the ligand in a non-competitive way. The non-competitive antibody binds to a loop that interacts with the ligand in the active conformation of the pocket but is shifted away from ligand in the inactive conformation. We refer to this as a parasteric inhibition, where the inhibitor binds adjacent to the ligand in the binding pocket. We showed that the receptor-blocking mechanism of parasteric antibody differs from that of orthosteric inhibition, where the inhibitor replaces the ligand or allosteric inhibition where the inhibitor binds at a site distant from the ligand, and is very potent in blocking bacterial adhesion, dissolving surface-adherent biofilms and protecting mice from urinary bladder infection.  相似文献   
110.
In search of new selective antagonists and/or agonists for the human melanocortin receptor subtypes hMC1R to hMC5R to elucidate the specific biological roles of each GPCR, we modified the structures of the superagonist MT-II (Ac-Nle-c[Asp-His-D-Phe-Arg-Trp-Lys]-NH(2)) and the hMC3R/hMC4R antagonist SHU9119 (Ac-Nle-c[Asp-His-D-Nal(2')-Arg-Trp-Lys]-NH(2)) by replacing the His-d-Phe and His-d-Nal(2') fragments in MT-II and SHU9119, respectively, with Aba-Xxx (4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one-Xxx) dipeptidomimetics (Xxx=D-Phe/pCl-D-Phe/D-Nal(2')). Employment of the Aba mimetic yielded novel selective high affinity hMC3R and hMC3R/hMC5R antagonists.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号