排序方式: 共有180条查询结果,搜索用时 15 毫秒
31.
32.
33.
We provide the first multilocus molecular phylogeny of a group corresponding to the former subfamily Staphylininae. Results are corroborated by the morphological, biogeographical and palaeobiological evidence to serve as a baseline for an updated suprageneric classification. The former subfamily Staphylininae is proven to be a lineage sister to the monophyletic Paederinae and reclassified according to a robust phylogeny resolving a number of long-standing controversies. The subfamily Xantholininae (revised status) is reinstated to contain the tribes Xantholinini, Othiini, Maorothiini and Diochini. Subfamily Platyprosopinae (revised status) is reinstated for the tribes Platyprosopinini, Arrowinini and †Thayeralinini. For a highly peculiar genus Coomania Cameron, formerly in Diochini, a new subfamily Coomaniinae subfam.n. is established and the composition of Diochini (revised status) is changed accordingly. The subfamily Staphylininae (revised status) is reduced to contain the former tribe Staphylinini only. Elevating this mega-diverse tribe to the subfamily rank opened up an opportunity for its more fractional classification by raising several subtribes to the tribal level as follows: Acylophorini, Afroquediini, Amblyopinini, Antimerini, †Baltognathini, Cyrtoquediini, Erichsoniini, Hyptiomini, Indoquediini, Quediini and Tanygnathinini (revised status for all). As a result, the most species-rich tribe Staphylinini (revised status) is reduced to the more homogeneous lineage containing the subtribes Algonina, Anisolinina, Philonthina, Philothalpina, Staphylinina and Xanthopygina. Morphological synapomorphies and diagnostic characters supporting all newly defined higher taxa are provided. This published work has been registered on ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:DED8B042-83C9-4D10-B0CB-B50372B067A9 . 相似文献
34.
The studies of ParA and ParB dynamics reveal asymmetry of chromosome segregation in mycobacteria 下载免费PDF全文
Isabella Santi Djenet Bousbaine Jolanta Zakrzewska‐Czerwińska Dagmara Jakimowicz John McKinney 《Molecular microbiology》2017,105(3):453-468
Active segregation of bacterial chromosomes usually involves the action of ParB proteins, which bind in proximity of chromosomal origin (oriC) regions forming nucleoprotein complexes – segrosomes. Newly duplicated segrosomes are moved either uni‐ or bidirectionally by the action of ATPases – ParA proteins. In Mycobacterium smegmatis the oriC region is located in an off‐centred position and newly replicated segrosomes are segregated towards cell poles. The elimination of M. smegmatis ParA and/or ParB leads to chromosome segregation defects. Here, we took advantage of microfluidic time‐lapse fluorescent microscopy to address the question of ParA and ParB dynamics in M. smegmatis and M. tuberculosis cells. Our results reveal that ParB complexes are segregated in an asymmetrical manner. The rapid movement of segrosomes is dependent on ParA that is transiently associated with the new pole. Remarkably in M. tuberculosis, the movement of the ParB complex is much slower than in M. smegmatis, but segregation as in M. smegmatis lasts approximately 10% of the cell cycle, which suggests a correlation between segregation dynamics and the growth rate. On the basis of our results, we propose a model for the asymmetric action of segregation machinery that reflects unequal division and growth of mycobacterial cells. 相似文献
35.
The structure, conformation and configuration of methyl 3-amino-2,3-dideoxy-alpha-d-arabino-hexopyranoside were confirmed by (1)H NMR, (13)C NMR and IR spectroscopy, as well as by optical rotation. The structure of the compound studied was also determined by single crystal X-ray crystallography at 293 K and refined to a final R=0.0521 based on 1798 independent reflections. The title compound crystallized in the tetragonal space group P4(3) with a=6.572(1) angstrom, b=6.572(1) angstrom, c=41.161(8) angstrom, D(c)=1.324 Mgcm(-3) and V=1777.8(5) angstrom(3) for Z=8. The packing arrangement in the unit cell displayed a stratified structure. Moreover, medium-strength N-H. . .O and O-H. . .O hydrogen bonds, which stabilized the 3-D structure of compound I, were observed. 相似文献
36.
37.
38.
Podolak Irma Grabowska Karolina Sobolewska Danuta Wróbel-Biedrawa Dagmara Makowska-Wąs Justyna Galanty Agnieszka 《Phytochemistry Reviews》2023,22(1):113-167
Phytochemistry Reviews - Saponins make up an important group of natural glycosidic compounds which are distinguished by triterpene or steroidal aglycone. Although widely distributed in terrestrial... 相似文献
39.
Goossens KV Stassen C Stals I Donohue DS Devreese B De Greve H Willaert RG 《Eukaryotic cell》2011,10(1):110-117
Saccharomyces cerevisiae cells possess a remarkable capacity to adhere to other yeast cells, which is called flocculation. Flocculation is defined as the phenomenon wherein yeast cells adhere in clumps and sediment rapidly from the medium in which they are suspended. These cell-cell interactions are mediated by a class of specific cell wall proteins, called flocculins, that stick out of the cell walls of flocculent cells. The N-terminal part of the three-domain protein is responsible for carbohydrate binding. We studied the N-terminal domain of the Flo1 protein (N-Flo1p), which is the most important flocculin responsible for flocculation of yeast cells. It was shown that this domain is both O and N glycosylated and is structurally composed mainly of β-sheets. The binding of N-Flo1p to D-mannose, α-methyl-D-mannoside, various dimannoses, and mannan confirmed that the N-terminal domain of Flo1p is indeed responsible for the sugar-binding activity of the protein. Moreover, fluorescence spectroscopy data suggest that N-Flo1p contains two mannose carbohydrate binding sites with different affinities. The carbohydrate dissociation constants show that the affinity of N-Flo1p for mono- and dimannoses is in the millimolar range for the binding site with low affinity and in the micromolar range for the binding site with high affinity. The high-affinity binding site has a higher affinity for low-molecular-weight (low-MW) mannose carbohydrates and no affinity for mannan. However, mannan as well as low-MW mannose carbohydrates can bind to the low-affinity binding site. These results extend the cellular flocculation model on the molecular level. 相似文献
40.
Dagmara Libiaková Carolien Ruyter-Spira Harro J. Bouwmeester Radoslava Matusova 《Plant Cell, Tissue and Organ Culture》2018,135(2):321-329
Phelipanche and Orobanche spp. (broomrapes) are economically important parasitic weeds, causing severe damage to many agricultural crops. However, conventional methods to control these parasitic weeds are often not effective. Targeting molecular and biochemical processes involved in the establishment of the connection between the parasite and the host may offer a new perspective for control. However, progress in the understanding of these processes is hampered by the fact that genetic transformation and regeneration of these parasites is difficult if not impossible due to their specific lifecycle. Phelipanche and Orobanche spp. are holoparasites that need to attach to the roots of a host plant to get their assimilates, nutrients and water to develop and reproduce. The present study describes a highly efficient genetic transformation and regeneration protocol for the root holoparasitic Phelipanche ramosa. We present a new transformation system for P. ramosa using Agrobacterium rhizogenes MSU440 carrying a non-destructive selection marker gene coding for a red fluorescent protein (DsRed1). Using this protocol up to 90% transformation efficiency was obtained. We transformed 4 weeks old P. ramosa calli and transgenic calli expressing DsRed1 were then cultured on host plants. For the first time, we present shoot and flower development of the transgenic parasitic plant P. ramosa after successful connection of transgenic calli with the host plant roots. Moreover, we also present, for the first time, growth and development of P. ramosa shoots and flowers in vitro in the absence of a host plant. 相似文献