首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1249篇
  免费   88篇
  2022年   15篇
  2021年   22篇
  2020年   8篇
  2019年   11篇
  2018年   31篇
  2017年   12篇
  2016年   20篇
  2015年   44篇
  2014年   61篇
  2013年   57篇
  2012年   92篇
  2011年   93篇
  2010年   56篇
  2009年   54篇
  2008年   66篇
  2007年   87篇
  2006年   72篇
  2005年   68篇
  2004年   49篇
  2003年   49篇
  2002年   81篇
  2001年   10篇
  2000年   11篇
  1999年   6篇
  1998年   24篇
  1997年   17篇
  1996年   10篇
  1995年   9篇
  1994年   7篇
  1993年   11篇
  1992年   14篇
  1991年   13篇
  1990年   6篇
  1989年   11篇
  1988年   7篇
  1987年   9篇
  1986年   7篇
  1985年   8篇
  1984年   11篇
  1982年   8篇
  1981年   7篇
  1980年   7篇
  1979年   5篇
  1977年   5篇
  1976年   11篇
  1974年   5篇
  1973年   4篇
  1972年   5篇
  1971年   8篇
  1969年   5篇
排序方式: 共有1337条查询结果,搜索用时 765 毫秒
161.
162.
The localization of different classes of alcohol dehydrogenases (ADH) in the brain is of great interest because of their role in both ethanol and retinoic acid metabolism. Conflicting data have been reported in the literature. By Northern blot and enzyme activity analyses only class III ADH has been detected in adult brain specimens, while results from riboprobe in situ hybridization indicate class I as well as class IV ADH expression in different regions of the rat brain. Here we have studied the expression patterns of three ADH classes in adult rat, mouse and human tissues using radioactive oligonucleotide in situ hybridization. Specificity of probes was tested on liver and stomach control tissue, as well as tissue from class IV ADH knock-out mice. Only class III ADH mRNA was found to be expressed in brain tissue of all three investigated species. Particularly high expression levels were found in neurons of the red nucleus in human tissue, while cortical neurons, pyramidal and granule cells of the hippocampus and dopamine neurons of substantia nigra showed moderate expression levels. Purkinje cells of cerebellum were positive for class III ADH mRNA in all species investigated, whereas granular layer neurons were positive only in rodents. The choroid plexus was highly positive for class III ADH, while no specific signal for class I or class IV ADH was detected. Our results thus support the notion that the only ADH expressed in adult mouse, rat and human brain is class III ADH.  相似文献   
163.
Hydroxyurea (HU) treatment of first instar honeybee larvae was previously shown to cause mushroom body (MB) ablations. Predominantly, either one or both median MB subunits were ablated. This prompted us to analyze the effects of asymmetrical or symmetrical HU‐induced MB ablation on both the morphology of the brain and on the level of three proteins (synapsin, PKA RII, and PKC), which are considered to play a role in synaptic plasticity, learning, and memory. In brains with one median MB subunit missing the volume of the overall MB calyx neuropil in the lesioned side was diminished by 35%. This strong reduction occurred although the remaining lateral MB calyx of the lesioned brain side was found to be significantly larger than that of the intact side. Accordingly, in brains with both median MB subunits missing the size of the remaining lateral calyces increased. The various types of MB ablation differentially affected the amounts of synapsin, PKA RII, and PKC expressed in the central brain. In animals with bilateral and thus symmetrical MB ablation (both median calyces ablated) the protein amount was found to be similar to that in control animals. However, unilateral MB ablation causes an increase in the amounts of the tested proteins in the intact brain side, while the levels in the ablated side were the same as in control animals. These findings not only show that HU‐induced ablation of MB subunits is accompanied by volume changes and by changes in protein expression, but also suggest that these processes are highly regulated between the brain sides. The latter is of general importance in understanding the potential contribution of the MB subunits to learning and memory and their interaction between the brain sides. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 31–44, 2002  相似文献   
164.
Hydroxyurea (HU) treatment of first instar honeybee larvae was previously shown to cause mushroom body (MB) ablations. Predominantly, either one or both median MB subunits were ablated. This prompted us to analyze the effects of asymmetrical or symmetrical HU-induced MB ablation on both the morphology of the brain and on the level of three proteins (synapsin, PKA RII, and PKC), which are considered to play a role in synaptic plasticity, learning, and memory. In brains with one median MB subunit missing the volume of the overall MB calyx neuropil in the lesioned side was diminished by 35%. This strong reduction occurred although the remaining lateral MB calyx of the lesioned brain side was found to be significantly larger than that of the intact side. Accordingly, in brains with both median MB subunits missing the size of the remaining lateral calyces increased. The various types of MB ablation differentially affected the amounts of synapsin, PKA RII, and PKC expressed in the central brain. In animals with bilateral and thus symmetrical MB ablation (both median calyces ablated) the protein amount was found to be similar to that in control animals. However, unilateral MB ablation causes an increase in the amounts of the tested proteins in the intact brain side, while the levels in the ablated side were the same as in control animals. These findings not only show that HU-induced ablation of MB subunits is accompanied by volume changes and by changes in protein expression, but also suggest that these processes are highly regulated between the brain sides. The latter is of general importance in understanding the potential contribution of the MB subunits to learning and memory and their interaction between the brain sides.  相似文献   
165.
Morphologically indistinguishable sibling species also known as syngens are a characteristic taxonomic feature of the ciliate genus Paramecium . This has been convincingly demonstrated for the P. aurelia species complex. For a long time this feature has also been assumed for P. caudatum . Classical morphology based techniques of taxonomic analysis are often inefficient to study sibling specie. We therefore investigated 14 P. caudatum strains of seven supposedly different syngens using random amplified polymorphic DNA (RAPD)-fingerprinting and amplified ribosomal DNA restriction analyses (ARDRA, Riboprinting). The RAPD patterns revealed by five different random primers were similar between the different strains of the same syngen (similarity index ranging from 73 to 91%) and also between strains of supposedly different syngens (similarity index ranging from 67 to 91%). The amplified 18S rRNA-fragments of supposedly different syngens, as well as the restriction patterns of these fragments digested by five different endonucleases, were identical for all investigated P. caudatum stains. Consequently we reject the sibling species hypothesis for P. caudatum . According to our molecular analysis, P. caudatum is not a species complex, but just one single species.  相似文献   
166.
The relative contribution of each anomer of D-glucose to the overall phosphorylation rate of the hexose tested at anomeric equilibrium was examined in rat liver postmicrosomal supernatants under conditions aimed at characterizing the activity of glucokinase, with negligible interference of either hexokinase, N-acetyl-D-glucosamine kinase or glucose-6-phosphatase (acting as a phosphotransferase). Both at 10 degrees and 30 degrees C, the relative contribution of each anomer was unaffected by the concentration of D-glucose. At both temperatures, the alpha/beta ratio for the contribution of each anomer was slightly, but significantly, lower than the alpha/beta ratio of anomer concentrations. These findings, which are consistent with the anomeric specificity of glucokinase in terms of affinity, cooperativity and maximal velocity, reveal that the preferred alpha-anomeric substrate for both glycogen synthesis and glycolysis is generated by glucokinase at a lower rate than is beta-D-glucose-6-phosphate.  相似文献   
167.
Subcellular compartmentation of pyrophosphate (PP1) was determined by rapid membrane filtration of evaeuolated oat mesophyll protoplasts. By improving both the extraction procedure and its assay via bioluminescence, PP1 recovery from samples was quantitative and linear down to below 200 fmol. Based on the content of the different fractions obtained after membrane filtration and compared to the respective pools of marker metabolites [cytosol, fructose 2,6-bisphosphate (F26BP); chloroplast stroma, ribulose bisphosphate] rather than enzymes, we found ca 2/3 of the total cellular content to be chloroplast-assotiated. Referred to compartmental volumes, cytosolic and stromal concentrations of PP1 were nearly equal (70–100 μ M ). PP1 was higher in evacuolated compared to racuotated protoplasts which indicates a possible role of the tonoplast-located H+ pumping PP1ase in regulating the cellular pool size of PP1. During dark-light-transition the pool sizes of PP1 changed only marginally in both vacuolated and evacuolated protoplasts, while there were pronounced changes in those of F26BP, starch and sucrose. Thus our findings support the notion that the cellular pool size of PP1 is kept rather constant. They are, however, in contrast to the assumption that appreciable PP1 levels only exist in the cytosol.  相似文献   
168.
Gene editing is now routine in all prokaryotic and metazoan cells but has not received much attention in immune cells when the CRISPR-Cas9 technology was introduced in the field of mammalian cell biology less than ten years ago. This versatile technology has been successfully adapted for gene modifications in human myeloid cells and T cells, among others, but applications to human primary B cells have been scarce and limited to activated B cells. This limitation has precluded conclusive studies into cell activation, differentiation or cell cycle control in this cell type. We report on highly efficient, simple and rapid genome engineering in primary resting human B cells using nucleofection of Cas9 ribonucleoprotein complexes, followed by EBV infection or culture on CD40 ligand feeder cells to drive in vitro B cell survival. We provide proof-of-principle of gene editing in quiescent human B cells using two model genes: CD46 and CDKN2A. The latter encodes the cell cycle regulator p16INK4a which is an important target of Epstein-Barr virus (EBV). Infection of B cells carrying a knockout of CDKN2A with wildtype and EBNA3 oncoprotein mutant strains of EBV allowed us to conclude that EBNA3C controls CDKN2A, the only barrier to B cell proliferation in EBV infected cells. Together, this approach enables efficient targeting of specific gene loci in quiescent human B cells supporting basic research as well as immunotherapeutic strategies.  相似文献   
169.
Lipoxygenases (ALOXs) are involved in the regulation of cellular redox homeostasis. They also have been implicated in the biosynthesis of pro- and anti-inflammatory lipid mediators and play a role in the pathogenesis of inflammatory diseases, which constitute a major health challenge owing to increasing incidence and prevalence in all industrialized countries around the world. To explore the pathophysiological role of Alox15 (leukocyte-type 12-LOX) in mouse experimental colitis we tested the impact of systemic inactivation of the Alox15 gene on the extent of dextrane sulfate sodium (DSS) colitis. We found that in wildtype mice expression of the Alox15 gene was augmented during DSS-colitis while expression of other Alox genes (Alox5, Alox15b) was hardly altered. Systemic Alox15 (leukocyte-type 12-LOX) deficiency induced less severe colitis symptoms and suppressed in vivo formation of 12-hydroxyeicosatetraenoic acid (12-HETE), the major Alox15 (leukocyte-type 12-LOX) product in mice. These alterations were paralleled by reduced expression of pro-inflammatory gene products, by sustained expression of the zonula occludens protein 1 (ZO-1) and by a less impaired intestinal epithelial barrier function. These results are consistent with in vitro incubations of colon epithelial cells, in which addition of 12S-HETE compromised enantioselectively transepithelial electric resistance. Consistent with these data transgenic overexpression of human ALOX15 intensified the inflammatory symptoms. In summary, our results indicate that systemic Alox15 (leukocyte-type 12-LOX) deficiency protects mice from DSS-colitis. Since exogenous 12-HETE compromises the expression of the tight junction protein ZO-1 the protective effect has been related to a less pronounced impairment of the intestinal epithelial barrier function.  相似文献   
170.

We previously developed an efficient deletion system for streptomycetes based on the positive selection of double-crossover events using bpsA, a gene for producing the blue pigment indigoidine. Using this system, we removed interfering secondary metabolite clusters from Streptomyces lividans TK24, resulting in RedStrep strains with dramatically increased heterologous production of mithramycin A (up to 3-g/l culture). This system, however, required a time-consuming step to remove the resistance marker genes. In order to simplify markerless deletions, we prepared a new system based on the plasmid pAMR18A. This plasmid contains a large polylinker with many unique restriction sites flanked by apramycin and kanamycin resistance genes and the bpsA gene for selecting a double-crossover event. The utility of this new markerless deletion system was demonstrated by its deletion of a 21-kb actinorhodin gene cluster from Streptomyces lividans TK24 with 30% efficiency. We used this system to efficiently remove the matA and matB genes in selected RedStrep strains, resulting in biotechnologically improved strains with a highly dispersed growth phenotype involving non-pelleting small and open mycelia. No further increase in mithramycin A production was observed in these new RedStrep strains, however. We also used this system for the markerless insertion of a heterologous mCherry gene, an improved variant of the monomeric red fluorescent protein, under the control of the strong secretory signal sequence of the subtilisin inhibitor protein, into the chromosome of S. lividans TK24. The resulting recombinant strains efficiently secreted mCherry into the growth medium in a yield of 30 mg/l.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号