首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2002年   3篇
  2001年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
11.
12.
  1. Many aquatic ecosystems are experiencing multiple anthropogenic stressors that threaten their ability to support ecologically and economically important fish species. Two of the most ubiquitous stressors are climate change and non-point source nutrient pollution.
  2. Agricultural conservation practices (ACPs, i.e. farming practices that reduce runoff, prevent erosion, and curb excessive nutrient loading) offer a potential means to mitigate the negative effects of non-point source pollution on fish populations. However, our understanding of how ACP implementation amidst a changing climate will affect fish production in large ecosystems that receive substantial upstream sediment and nutrient inputs remains incomplete.
  3. Towards this end, we explored how anticipated climate change and the implementation of realistic ACPs might alter the recruitment dynamics of three fish populations (native walleye Sander vitreus and yellow perch Perca flavescens and invasive white perch Morone americana) in the highly productive, dynamic west basin of Lake Erie. We projected future (2020–2065) recruitment under different combinations of anticipated climate change (n = 2 levels) and ACP implementation (n = 4 levels) in the western Lake Erie catchment using predictive biological models driven by forecasted winter severity, spring warming rate, and Maumee River total phosphorus loads that were generated from linked climate, catchment-hydrology, and agricultural-practice-simulation models.
  4. In general, our models projected reduced walleye and yellow perch recruitment whereas invasive white perch recruitment was projected to remain stable or increase relative to the recent past. Our modelling also suggests the potential for trade-offs, as ACP implementation was projected to reduce yellow perch recruitment with anticipated climate change.
  5. Overall, our study presents a useful modelling framework to forecast fish recruitment in Lake Erie and elsewhere, as well as offering projections and new avenues of research that could help resource management agencies and policy-makers develop adaptive and resilient management strategies in the face of anticipated climate and land-management change.
  相似文献   
13.
Probiotics and Antimicrobial Proteins - As of recent, the pandemic episode of COVID-19, a severe acute respiratory syndrome brought about by a novel coronavirus (SARS-CoV-2) expanding the pace of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号