首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   427篇
  免费   41篇
  2023年   2篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2017年   9篇
  2016年   9篇
  2015年   20篇
  2014年   25篇
  2013年   25篇
  2012年   29篇
  2011年   35篇
  2010年   25篇
  2009年   12篇
  2008年   12篇
  2007年   24篇
  2006年   22篇
  2005年   26篇
  2004年   28篇
  2003年   20篇
  2002年   25篇
  2001年   7篇
  2000年   10篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   8篇
  1993年   3篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1985年   4篇
  1984年   1篇
  1983年   4篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有468条查询结果,搜索用时 31 毫秒
411.
Phytoplankton acclimates to irradiance by regulating the cellular content of light‐harvesting complexes, which are nitrogen (N) rich and phosphorus (P) poor. Irradiance is thus hypothesised to influence the cellular N : P ratio and the N : P defining the threshold between N and P limitation (the ‘optimal’ N : P). We tested this hypothesis by first addressing the response of the optimal N : P to irradiance in a controlled experiment with Chlamydomonas reinhardtii. Then, we did a meta‐analysis of experimental data on optimal and cellular N : P ratios across light gradients to test the generality of an N : P to light response within species. In both the experiment and the meta‐analysis, N : P ratios decreased with irradiance, indicating that factors affecting underwater irradiance, like depth and the composition of the water, may influence the relative N : P requirement. The effect of irradiance did not differ between optimal and cellular N : P ratios, but observations of optimal N : P were on average 2.8 times higher than observations of cellular N : P.  相似文献   
412.
Optimal foraging models predict that individual animals will optimize net energy gain by intensifying forage activity and/or reducing forage energy cost. Then, the free distribution model predicts an animal''s distribution in a patchy landscape will match the distribution of the resources. If not modified by other factors, such patterns may be expected to be particularly explicit in variable and extreme, forage‐limited, and patchy environments, notably alpine and Arctic environments during winter. The large ungulate wild mountain reindeer (Rangifer tarandus tarandus) surviving in such environments is used as a model during the forage‐limited winter season. The largest wild reindeer area in Western Europe (Hardangervidda, 8130 km2) is actively managed to sustain 10,000–12,000 wild reindeer. Since 2001, 104 different individuals have been GPS‐tracked at 3‐hr intervals. In winter, mountain reindeer may either choose to seek out and forage in patchy snow‐free habitats, typically on top of wind‐blown ridges, or use energy‐demanding digging through the snow to reach ground forage (cratering). We use late April satellite data from Landsat 5 and 8 (30 × 30 m), airborne laser scanning subsampling (processed to 1 × 1 m grid), and topographic information (1 m resolution) derived from digital aerial photographs (0.25 × 0.25 m resolution) to delineate snow‐free patches, constituting less than 694 km2. By overlaying recorded wild reindeer GPS positions winters 2001–2017 (188,942 positions), we document a strong positive selection for snow‐free patches, which were used about four times more frequently than expected from a “random walk” model. On a daily basis, the preference for snow‐free areas was slightly stronger in the evenings. In the sustainable management of wild mountain reindeer, the area of snow‐free patches is an important predictor of winter forage availability and important winter source areas. It may be derived from remote sensing data.  相似文献   
413.
Atlantic cod and spotted wolffish fry were fed high-M alginate containing feed for 59 and 55 days, respectively. During this period the fry showed a higher specific growth rate compared to controls. Uptake and distribution of alginate was studied by inclusion of the (125)I-labelled molecule in the feed. The stomach and intestine contained the highest amount while the kidney, liver and spleen contained some, indicating that the alginate was taken up by the gut and transported to internal organs. Cod fry fed 0.06% and 0.1% high-M alginate showed a death rate of 51.4% and 53.3%, respectively. The lowest mortality, 48.1%, was found in fry fed 0.01% high-M alginate. Controls showed a mortality rate of 49.0%. Differences were, however, not statistically significant. Challenge of the immunostimulated fry (fed 0.02% and 0.06% alginate for 62 days) with atypical Aeromonas salmonicida bacteria resulted in accumulated mortalities of 56% and 49%, respectively, 47 days after infection. The group that received 0.06% alginate for a shorter period (47 days) and then control feed until challenged, and the group that received alginate by bath reached a cumulative mortality of 59% and 60%, respectively. Lowest mortality (44%) was seen in the control group. Numerous microabscesses were found in both immunostimulated and control fish in secondary lamellae of the gills, haematopoietic tissues of the kidneys, the submucosa and mucosa of the intestine, the spleen, the liver and the myocardium of the heart.  相似文献   
414.
415.
The ability to bypass DNA lesions encountered during replication is important in order to maintain cell viability and avoid genomic instability. Exposure of mammalian cells to UV-irradiation induces the formation of DNA lesions that stall replication forks. In order to restore replication, different bypass mechanisms are operating, previously named post-replication repair. Translesion DNA synthesis is performed by low-fidelity polymerases, which can replicate across damaged sites. The nature of lesions and of polymerases involved influences the resulting frequency of mutations. Homologous recombination represents an alternative pathway for the rescue of stalled replication forks. Caffeine has long been recognized to influence post-replication repair, although the mechanism is not identified. Here, we found that caffeine delays the progress of replication forks in UV-irradiated Chinese hamster cells. The length of this enhanced delay was similar in wild-type cells and in cell deficient in either homologous recombination or nucleotide excision repair. Furthermore, caffeine attenuated the frequency of UV-induced mutations in the hprt gene, whereas the frequency of recombination, monitored in this same gene, was enhanced. These observations indicate that in cells exposed to UV-light, caffeine inhibits the rescue of stalled replication forks by translesion DNA synthesis, thereby causing a switch to bypass via homologous recombination. The biological consequence of the former pathway is mutations, while the latter results in chromosomal aberrations.  相似文献   
416.
The primary production in the Greenland Sea, Fram Strait, Barents Sea, Kara Sea and adjacent Polar Ocean was investigated through the physically–biologically coupled, nested 3D SINMOD model with 4 km grid size for the years 1995–2007. The model had atmospheric forcing from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data. Three basic gross primary production (GPP) domains were distinguished: (i) an extensive domain dominated by Atlantic Water, (ii) an elongated domain roughly corresponding to the seasonal ice zone (SIZ) and (iii) a compact perennial ice zone (>100, between 100 and 30 and <30 g C m?2 year?1, respectively). The interannual coefficient of variation for GPP in domain (i) was <0.1, and increased northwards towards >0.6 in the northwesternmost and northeasternmost fringe of the SIZ. The primary production in the northern sector of the European Arctic Corridor (EAC) region prior to 2007 was characterised by limited interannual variability, on average 75.2 ± 10% and 24.0 ± 16% g C m?2 year?1 for the EAC region at 74–80 and >80°N, respectively. The main primary production anomalies were found early in the productive season and in sections of the SIZ, generally in regions with low GPP. There was no significant trend of increasing GPP in the 1995–2007 time interval.  相似文献   
417.
doi:10.1111/j.1741‐2358.2009.00329.x
Experiments on in vivo biofilm formation and in vitro adhesion of Candida species on polysiloxane liners Objectives: Microorganisms may colonise polysiloxane soft liners leading to bio‐deterioration. The aim of this study was to investigate in vitro adhesion and in vivo biofilm formation of Candida species on polysiloxane surfaces. Methods: The materials used in this study were Molloplast B, GC Reline soft, Mollosil Plus, Silagum Comfort and Palapress Vario. The in vitro retention of clinical isolates of Candida albicans to the relining and denture‐base materials by microscopic (scanning electron microscopy, SEM), conventional culturing methods and antimicrobial properties of these materials were studied. Candida found on materials and mucosa following long‐term use were identified and quantified, and biofilms covering the surfaces were investigated by SEM. Results: There was a significant decrease in the number of cells attached in vitro to saliva‐coated surfaces compared with non‐treated surfaces. An oral Candida carriage of 78% was found. Candida albicans, C. glabrata, C. intermedia and C. tropicalis were identified. In vivo biofilm formation on the liners appeared as massive colonisation by microorganisms. Conclusions: The results of the in vitro experiments suggest that salivary film influences early colonisation of different C. albicans strains. The film layer also minimises the differences among different strains. The Candida carriage of these patients was similar to denture‐wearing patients without soft liners.  相似文献   
418.
Most ecosystem models consolidate members of food-webs, e.g. species, into a small number of functional components. Each of these is then described by a single state variable such as biomass. When a multivariate approach incorporating multiple substances within components is substituted for this univariate one, a stoichiometric model is formed. Here we show that the Nitrogen:Phosphorus ratio within zooplankton herbivores varies substantially intraspecifically but not intraspecifically. By using stoichiometric theory and recent measurements of the N:P ratio within different zooplankton taxa, we calculate large differences in ratios of nutrients recycled by different zooplankton species. Finally, we demonstrate that N:P stoichiometry can successfully account for shifts in N- and P-limitation previously observed in whole-lake experiments. Species stoichiometry merges food-web dynamics with biogeochemical cycles to yield new insights.Abbreviations b N:P in zooplankton biomass - f N:P in algal biomass - L maximum accumulation eficiency - N:P ratio of nitrogen to phosphorus (moles:moles) - s N:P supply ratio from grazers - TN Total nitrogen = seston N + dissolved N (µmoles/liter) - TP Total phosphorus = seston P + dissolved P (µmoles/liter)  相似文献   
419.
420.
Grazing resistance in nutrient-stressed phytoplankton   总被引:7,自引:0,他引:7  
Grazing experiments were performed with the zooplankters Daphnia pulex and Daphnia magna, feeding on phosphorus-saturated and phosphorus-limited cells of two green algae (Scenedesmus subspicatus and Selenastrum capricornutum). P-limited algal cells passed largely intact through the gut and were thus spared from heavy grazing pressure. P-saturated algal cells, in contrast, were efficiently assimilated. Structural and morphological changes in the P-limited cells most probably reduced their digestibility. This phenomenon may be an important factor in zooplankton production and competition, and may serve as an example of a highly efficient strategy of P-limited algae to resist heavy grazing pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号