首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   39篇
  2023年   2篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2017年   8篇
  2016年   8篇
  2015年   19篇
  2014年   26篇
  2013年   25篇
  2012年   29篇
  2011年   33篇
  2010年   24篇
  2009年   11篇
  2008年   12篇
  2007年   21篇
  2006年   21篇
  2005年   26篇
  2004年   28篇
  2003年   19篇
  2002年   25篇
  2001年   7篇
  2000年   10篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   8篇
  1993年   3篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1985年   4篇
  1984年   1篇
  1983年   4篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有462条查询结果,搜索用时 46 毫秒
141.
142.
Climate change is expected to influence the viability of populations both directly and indirectly, via species interactions. The effects of large‐scale climate change are also likely to interact with local habitat conditions. Management actions designed to preserve threatened species therefore need to adapt both to the prevailing climate and local conditions. Yet, few studies have separated the direct and indirect effects of climatic variables on the viability of local populations and discussed the implications for optimal management. We used 30 years of demographic data to estimate the simultaneous effects of management practice and among‐year variation in four climatic variables on individual survival, growth and fecundity in one coastal and one inland population of the perennial orchid Dactylorhiza lapponica in Norway. Current management, mowing, is expected to reduce competitive interactions. Statistical models of how climate and management practice influenced vital rates were incorporated into matrix population models to quantify effects on population growth rate. Effects of climate differed between mown and control plots in both populations. In particular, population growth rate increased more strongly with summer temperature in mown plots than in control plots. Population growth rate declined with spring temperature in the inland population, and with precipitation in the coastal population, and the decline was stronger in control plots in both populations. These results illustrate that both direct and indirect effects of climate change are important for population viability and that net effects depend both on local abiotic conditions and on biotic conditions in terms of management practice and intensity of competition. The results also show that effects of management practices influencing competitive interactions can strongly depend on climatic factors. We conclude that interactions between climate and management should be considered to reliably predict future population viability and optimize conservation actions.  相似文献   
143.

Background  

Enterococci rank among the leading causes of nosocomial infections. The failure to identify pathogen-specific genes in Enterococcus faecalis has led to a hypothesis where the virulence of different strains may be linked to strain-specific genes, and where the combined endeavor of the different gene-sets result in the ability to cause infection. Population structure studies by multilocus sequence typing have defined distinct clonal complexes (CC) of E. faecalis enriched in hospitalized patients (CC2, CC9, CC28 and CC40).  相似文献   
144.
An ongoing outbreak of exceptionally virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4 centered in Germany, has caused over 830 cases of hemolytic uremic syndrome (HUS) and 46 deaths since May 2011. Serotype O104:H4, which has not been detected in animals, has rarely been associated with HUS in the past. To prospectively elucidate the unique characteristics of this strain in the early stages of this outbreak, we applied whole genome sequencing on the Life Technologies Ion Torrent PGM? sequencer and Optical Mapping to characterize one outbreak isolate (LB226692) and a historic O104:H4 HUS isolate from 2001 (01-09591). Reference guided draft assemblies of both strains were completed with the newly introduced PGM? within 62 hours. The HUS-associated strains both carried genes typically found in two types of pathogenic E. coli, enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC). Phylogenetic analyses of 1,144 core E. coli genes indicate that the HUS-causing O104:H4 strains and the previously published sequence of the EAEC strain 55989 show a close relationship but are only distantly related to common EHEC serotypes. Though closely related, the outbreak strain differs from the 2001 strain in plasmid content and fimbrial genes. We propose a model in which EAEC 55989 and EHEC O104:H4 strains evolved from a common EHEC O104:H4 progenitor, and suggest that by stepwise gain and loss of chromosomal and plasmid-encoded virulence factors, a highly pathogenic hybrid of EAEC and EHEC emerged as the current outbreak clone. In conclusion, rapid next-generation technologies facilitated prospective whole genome characterization in the early stages of an outbreak.  相似文献   
145.
146.

Background

Biomarkers to differentiate between active tuberculosis (TB) and latent TB infection (LTBI) and to monitor treatment responses are requested to complement TB diagnostics and control, particularly in patients with multi-drug resistant TB. We have studied soluble markers of the Toll-like-receptor 4 (TLR-4) pathway in various stages of TB disease and during anti-TB treatment.

Methods

Plasma samples from patients with culture confirmed drug-sensitive TB (n = 19) were collected before and after 2, 8 and 24 weeks of efficient anti-TB treatment and in a LTBI group (n = 6). Soluble (s) CD14 and myeloid differentiation-2 (MD-2) were analyzed by the Enzyme-linked immunosorbent assay (ELISA). Lipopolysaccharide (LPS) was analyzed by the Limulus Amebocyte Lysate colorimetric assay. Nonparametric statistics were applied.

Results

Plasma levels of sCD14 (p<0.001), MD-2 (p = 0.036) and LPS (p = 0.069) were elevated at baseline in patients with untreated active TB compared to the LTBI group. MD-2 concentrations decreased after 2 weeks of treatment (p = 0.011), while LPS levels decreased after 8 weeks (p = 0.005). In contrast, sCD14 levels increased after 2 weeks (p = 0.047) with a subsequent modest decrease throughout the treatment period. There was no significant difference in concentrations of any of these markers between patients with pulmonary and extrapulmonary TB or between patients with or without symptoms.

Conclusion

Our data suggest that plasma levels of LPS, MD-2 and sCD14 can discriminate between active TB and LTBI. A decline in LPS and MD-2 concentrations was associated with response to anti-TB treatment. The clinical potential of these soluble TLR-4 pathway proteins needs to be further explored.  相似文献   
147.
In aquatic environments, prey perceive predator threats by chemical cues called kairomones, which can induce changes in their morphology, life histories, and behavior. Predator‐induced defenses have allowed for prey, such as Daphnia pulex, to avert capture by common invertebrate predators, such as Chaoborus sp. larvae. However, the influence of additional stressors, such as ultraviolet radiation (UVR), on the Daphnia–Chaoborus interaction is not settled as UVR may for instance deactivate the kairomone. In laboratory experiments, we investigated the combined effect of kairomones and UVR at ecologically relevant levels on induced morphological defenses of two D. pulex clones. We found that kairomones were not deactivated by UVR exposure. Instead, UVR exposure suppressed induced morphological defense traits of D. pulex juveniles under predation threat by generally decreasing the number of neckteeth and especially by decreasing the size of the pedestal beneath the neckteeth. UVR exposure also decreased the body length, body width, and tail spine length of juveniles, likely additionally increasing the vulnerability to Chaoborus predation. Our results suggest potential detrimental effects on fitness and survival of D. pulex subject to UVR stress, with consequences on community composition and food web structure in clear and shallow water bodies.  相似文献   
148.
Several systemic autoimmune diseases display a prominent IFN signature. This is caused by a continuous IFN-α production by plasmacytoid dendritic cells (pDCs), which are activated by immune complexes (ICs) containing nucleic acid. The IFN-α production by pDCs stimulated with RNA-containing IC (RNA-IC) consisting of anti-RNP autoantibodies and U1 small nuclear ribonucleoprotein particles was recently shown to be inhibited by monocytes, but enhanced by NK cells. The inhibitory effect of monocytes was mediated by TNF-α, PGE(2), and reactive oxygen species, but the mechanisms for the NK cell-mediated increase in IFN-α production remained unclear. In this study, we investigated the mechanisms whereby NK cells increase the RNA-IC-induced IFN-α production by pDCs. Furthermore, NK cells from patients with systemic lupus erythematosus (SLE) were evaluated for their capacity to promote IFN-α production. We found that CD56(dim) NK cells could increase IFN-α production >1000-fold after RNA-IC activation, whereas CD56(bright) NK cells required costimulation by IL-12 and IL-18 to promote IFN-α production. NK cells produced MIP-1α, MIP-1β, RANTES, IFN-γ, and TNF-α via RNA-IC-mediated FcγRIIIA activation. The IFN-α production in pDCs was promoted by NK cells via MIP-1β secretion and LFA-mediated cell-cell contact. Moreover, NK cells from SLE patients displayed a reduced capacity to promote the RNA-IC-induced IFN-α production, which could be restored by exogenous IL-12 and IL-18. Thus, different molecular mechanisms can mediate the NK cell-dependent increase in IFN-α production by RNA-IC-stimulated pDCs, and our study suggests that the possibility to therapeutically target the NK-pDC axis in IFN-α-driven autoimmune diseases such as SLE should be investigated.  相似文献   
149.
Invertebrate herbivores frequently face growth rate constraints due to their high demands for phosphorus (P) and nitrogen (N). Temperature is a key modulator of growth rate, yet the interaction between temperature and P limitation on somatic growth rate is scarcely known. To investigate this interaction, we conducted a study on the somatic growth rate (SGR) of the cladoceran Daphnia magna, known to be susceptible to P-limitation. We determined the SGR across a broad range of dietary P content of algae (carbon (C):P ratios (125?C790), and at different temperatures (10?C25°C). There was a strong impact of both temperature and C:P ratio on the SGR of D. magna, and also a significant interaction between both factors was revealed. The negative effect of dietary C:P on growth rate was reduced with decreased temperature. We found no evidence of P limitation at lowest temperature, suggesting that enzyme kinetics or other measures of food quality overrides the demands for P to RNA and protein synthesis at low temperatures. These findings also indicate an increased risk of P limitation and thus reduced growth efficiency at high temperatures.  相似文献   
150.
Boysen P  Eide DM  Storset AK 《Molecular ecology》2011,20(23):5103-5110
Recent reports have shown that natural killer (NK) cells may be long-lived, possess memory-like features and may need microbial priming to become fully reactive. Thus, the notion that these cells are typically innate, nonadaptive lymphocytes has been challenged. If microbial priming is essential for functional maturity, it is necessary to raise the question whether NK cells of laboratory mice, kept under strict hygienic conditions, represent these cells adequately. In their natural habitat, mice will encounter microbes to a greater extent, and we here investigated whether NK cells of feral mice showed signs of being primed. In comparison with C57BL/6 mice raised under specific pathogen-free conditions, NK cells from feral mice had high expression of CD69, KLRG1, granzyme B and NKp46 and a higher proportion of CD27+ cells, mostly CD11b-, as well as a higher presence in peripheral lymph nodes. Following cytokine stimulation, feral mouse NK cells had quickly inducible CD25 expression and a stronger interferon-gamma response. These findings indicate a high degree of pre-activation of NK cells of free-living mice, indicating a strong environmental impact on NK cells, which may be highly relevant for interpretation of studies in the mouse model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号