首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1301篇
  免费   103篇
  2023年   7篇
  2021年   12篇
  2019年   11篇
  2018年   22篇
  2017年   26篇
  2016年   27篇
  2015年   36篇
  2014年   35篇
  2013年   90篇
  2012年   82篇
  2011年   102篇
  2010年   73篇
  2009年   48篇
  2008年   55篇
  2007年   60篇
  2006年   63篇
  2005年   60篇
  2004年   79篇
  2003年   57篇
  2002年   60篇
  2001年   18篇
  2000年   23篇
  1999年   20篇
  1998年   14篇
  1997年   17篇
  1996年   10篇
  1995年   12篇
  1994年   18篇
  1993年   8篇
  1992年   11篇
  1991年   8篇
  1990年   10篇
  1989年   10篇
  1988年   7篇
  1987年   10篇
  1986年   6篇
  1985年   8篇
  1983年   17篇
  1982年   15篇
  1981年   9篇
  1980年   11篇
  1977年   6篇
  1971年   7篇
  1955年   8篇
  1954年   27篇
  1953年   8篇
  1952年   9篇
  1951年   9篇
  1950年   7篇
  1949年   7篇
排序方式: 共有1404条查询结果,搜索用时 15 毫秒
141.
142.
143.
Social stress is frequently used as a model for studying the neuroendocrine mechanisms underlying stress-induced behavioral inhibition, depression, and fear conditioning. It has previously been shown that social subordination may result in increased glucocorticoid release and changes in brain signaling systems. However, it is still an open question which neuroendocrine and behavioral differences are causes, and which are consequences of social status. Using juvenile rainbow trout of similar size and with no apparent differences in social history, we demonstrate that the ability to win fights for social dominance can be predicted from the duration of a behavioral response to stress, in this case appetite inhibition after transfer to a new environment. Moreover, stress responsiveness in terms of confinement-induced changes in plasma cortisol was negatively correlated to aggressive behavior. Fish that exhibited lower cortisol responses to a standardized confinement test were markedly more aggressive when being placed in a dominant social position later in the study. These findings support the view that distinct behavioral-physiological stress coping styles are present in teleost fish, and these coping characteristics influence both social rank and levels of aggression.  相似文献   
144.
Almond A  Petersen BO  Duus JØ 《Biochemistry》2004,43(19):5853-5863
Fucosylated O- and N-linked glycans are essential recognition molecules in plants and animals. To understand how they impart their functions, through interactions with proteins, requires a detailed analysis of structure and dynamics, but this is presently lacking. In this study, the three-dimensional structure and dynamics of three fucosylated oligosaccharides are investigated using a combination of high field (800 MHz) nuclear magnetic resonance and long (50 ns) molecular dynamics simulations in explicit water. Predictions from dynamics simulations were in agreement with nuclear Overhauser cross-peak intensities. Similarly, a theory of weak alignment in neutral media resulted in reasonable predictions of residual dipolar couplings for the trisaccharide fucosyllactose. However, for larger penta- and hexasaccharides (LNF-1 and LND-1), the anisotropic component of the alignment was underestimated, attributed to shape irregularities of the fucosyl branches on an otherwise linear core, being more pronounced in a singly branched than a doubly branched oligosaccharide. Simulations, confirmed by experiment, predicted fucosylated molecules that are restricted to librations about a single average conformation. This restriction is partly due to microscopic water interactions, which act to stabilize intramolecular hydrogen bonds and maintain tight and ordered conformations; a view not forthcoming from simpler, nonaqueous simulations. Such a conclusion is crucial for understanding how these molecules interact with proteins and impart their recognition properties.  相似文献   
145.
Celiac disease is an HLA-DQ2-associated disorder characterized by intestinal T cell responses to ingested wheat gluten proteins. A peptide fragment of 33 residues (alpha(2)-gliadin 56-88) produced by normal gastrointestinal proteolysis contains six partly overlapping copies of three T cell epitopes and is a remarkably potent T cell stimulator after deamidation by tissue transglutaminase (TG2). This 33-mer is rich in proline residues and adopts the type II polyproline helical conformation in solution. In this study we report that after deamidation, the 33-mer bound with higher affinity to DQ2 compared with other monovalent peptides harboring gliadin epitopes. We found that the TG2-treated 33-mer was presented equally effectively by live and glutaraldehyde-fixed, EBV-transformed B cells. The TG2-treated 33-mer was also effectively presented by glutaraldehyde-fixed dendritic cells, albeit live dendritic cells were the most effective APCs. A strikingly increased T cell stimulatory potency of the 33-mer compared with a 12-mer peptide was also seen with fixed APCs. The 33-mer showed binding maximum to DQ2 at pH 6.3, higher than maxima found for other high affinity DQ2 binders. The 33-mer is thus a potent T cell stimulator that does not require further processing within APC for T cell presentation and that binds to DQ2 with a pH profile that promotes extracellular binding.  相似文献   
146.
Adaptation to cool environments is a common feature in the core group of the grass subfamily Pooideae (Triticeae and Poeae). This suggest an ancient evolutionary origin of low temperature stress tolerance dating back prior to the initiation of taxonomic divergence of core Pooideae species. Viewing the Pooideae evolution in a palaeo‐climatic perspective reveals that taxonomic divergence of the core Pooideae group initiated shortly after a global super‐cooling period at the Eocene–Oligocene boundary (~33.5–26 Ma). This global climate cooling altered distributions of plants and animals and must have imposed selection pressure for improved low temperature stress responses. Lineage‐specific gene family expansions are known to be involved in adaptation to new environmental stresses. In Pooideae, two gene families involved in low temperature stress response, the C‐repeat binding factor (CBF) and fructosyl transferase (FT) gene families, has undergone lineage‐specific expansions. We investigated the timing of these gene family expansions by molecular dating and found that Pooideae‐specific expansion events in CBF and FT gene families took place during Eocene–Oligocene super‐cooling period. We hypothesize that the E–O super‐cooling exerted selection pressure for improved low temperature stress response and frost tolerance in a core Pooideae ancestor, and that those individuals with multiple copies of CBF and FT genes were favoured.  相似文献   
147.

Background

Our aim was to estimate the effect of two myostatin (MSTN) mutations in Norwegian White Sheep, one of which is close to fixation in the Texel breed.

Methods

The impact of two known MSTN mutations was examined in a field experiment with Norwegian White Sheep. The joint effect of the two MSTN mutations on live weight gain and weaning weight was studied on 644 lambs. Carcass weight gain from birth to slaughter, carcass weight, carcass conformation and carcass fat classes were calculated in a subset of 508 lambs. All analyses were carried out with a univariate linear animal model.

Results

The most significant impact of both mutations was on conformation and fat classes. The largest difference between the genotype groups was between the wild type for both mutations and the homozygotes for the c.960delG mutation. Compared to the wild types, these mutants obtained a conformation score 5.1 classes higher and a fat score 3.0 classes lower, both on a 15-point scale.

Conclusions

Both mutations reduced fatness and increased muscle mass, although the effect of the frameshift mutation (c.960delG) was more important as compared to the 3''-UTR mutation (c.2360G>A). Lambs homozygous for the c.960delG mutation grew more slowly than those with other MSTN genotypes, but had the least fat and the largest muscle mass. Only c.960delG showed dominance effects.  相似文献   
148.
The brood parasitic common cuckoo Cuculus canorus consists of gentes, which typically parasitize only a single host species whose eggs they often mimic. Where multiple cuckoo gentes co‐exist in sympatry, we may expect variable but generally poorer mimicry because of host switches or inter‐gens gene flow via males if these also contribute to egg phenotypes. Here, we investigated egg trait differentiation and mimicry in three cuckoo gentes parasitizing great reed warblers Acrocephalus arundinaceus, marsh warblers Acrocephalus palustris and corn buntings Miliaria calandra breeding in close sympatry in partially overlapping habitat types. The three cuckoo gentes showed a remarkable degree of mimicry to their three host species in some but not all egg features, including egg size, a hitherto largely ignored feature of egg mimicry. Egg phenotype matching for both background and spot colours as well as for egg size has been maintained in close sympatry despite the possibility for gene flow.  相似文献   
149.
Serial transfer of plastids from one eukaryotic host to another is the key process involved in evolution of secondhand plastids. Such transfers drastically change the environment of the plastids and hence the selection regimes, presumably leading to changes over time in the characteristics of plastid gene evolution and to misleading phylogenetic inferences. About half of the dinoflagellate protists species are photosynthetic and unique in harboring a diversity of plastids acquired from a wide range of eukaryotic algae. They are therefore ideal for studying evolutionary processes of plastids gained through secondary and tertiary endosymbioses. In the light of these processes, we have evaluated the origin of 2 types of dinoflagellate plastids, containing the peridinin or 19'-hexanoyloxyfucoxanthin (19'-HNOF) pigments, by inferring the phylogeny using "covarion" evolutionary models allowing the pattern of among-site rate variation to change over time. Our investigations of genes from secondary and tertiary plastids derived from the rhodophyte plastid lineage clearly reveal "heterotachy" processes characterized as stationary covarion substitution patterns and changes in proportion of variable sites across sequences. Failure to accommodate covarion-like substitution patterns can have strong effects on the plastid tree topology. Importantly, multigene analyses performed with probabilistic methods using among-site rate and covarion models of evolution conflict with proposed single origin of the peridinin- and 19'-HNOF-containing plastids, suggesting that analysis of secondhand plastids can be hampered by convergence in the evolutionary signature of the plastid DNA sequences. Another type of sequence convergence was detected at protein level involving the psaA gene. Excluding the psaA sequence from a concatenated protein alignment grouped the peridinin plastid with haptophytes, congruent with all DNA trees. Altogether, taking account of complex processes involved in the evolution of dinoflagellate plastid sequences (both at the DNA and amino acid level), we demonstrate the difficulty of excluding independent, tertiary origin for both the peridinin and 19'-HNOF plastids involving engulfment of haptophyte-like algae. In addition, the refined topologies suggest the red algal order, Porphyridales, as the endosymbiont ancestor of the secondary plastids in cryptophytes, haptophytes, and heterokonts.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号