首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491篇
  免费   43篇
  2023年   2篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2017年   8篇
  2016年   9篇
  2015年   34篇
  2014年   32篇
  2013年   33篇
  2012年   42篇
  2011年   33篇
  2010年   36篇
  2009年   20篇
  2008年   12篇
  2007年   21篇
  2006年   21篇
  2005年   26篇
  2004年   28篇
  2003年   19篇
  2002年   25篇
  2001年   7篇
  2000年   10篇
  1999年   6篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1994年   8篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   5篇
  1989年   6篇
  1988年   2篇
  1987年   4篇
  1985年   4篇
  1983年   4篇
  1982年   5篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1974年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有534条查询结果,搜索用时 31 毫秒
121.
The lipopolysaccharide of Plesiomonas shigelloides serotype O74:H5 (strain CNCTC 144/92) was obtained with the hot phenol/water method, but unlike most of the S-type enterobacterial lipopolysaccharides, the O-antigens were preferentially extracted into the phenol phase. The poly- and oligosaccharides released by mild acidic hydrolysis of the lipopolysaccharide from both phenol and water phases were separated and investigated by (1)H and (13)C NMR spectroscopy, MALDI-TOF mass spectrometry, and sugar and methylation analysis. The O-specific polysaccharide and oligosaccharides consisting of the core, the core with one repeating unit, and the core with two repeating units were isolated. It was concluded that the O-specific polysaccharide is composed of a trisaccharide repeating unit with the [-->2)-beta-d-Quip3NAcyl-(1-->3)-alpha-l-Rhap2OAc-(1-->3)-alpha-d-FucpNAc-(1-->] structure, in which d-Qui3NAcyl is 3-amino-3,6-dideoxy-d-glucose acylated with 3-hydroxy-2,3-dimethyl-5-oxopyrrolidine-2-carboxylic acid. The major oligosaccharide consisted of a single repeating unit and a core oligosaccharide. This undecasaccharide contains information about the biological repeating unit and the type and position of the linkage between the O-specific chain and core. The presence of a terminal beta-d-Quip3NAcyl-(1--> residue and the -->3)-beta-d-FucpNAc-(1-->4)-alpha-d-GalpA element showed the structure of the biological repeating unit of the O-antigen and the substitution position to the core. The -->3)-beta-d-FucpNAc-(1--> residue has the anomeric configuration inverted compared to the same residue in the repeating unit. The core oligosaccharide was composed of a nonphosphorylated octasaccharide, which represents a novel core type of P. shigelloides LPS characteristic of serotype O74. The similarity between the isolated O-specific polysaccharide and that found on intact bacterial cells and lipopolysaccharide was confirmed by HR-MAS NMR experiments.  相似文献   
122.
The intestinal flora of mammals contains lactic acid bacteria (LAB) that may provide positive health effects for the host. Such bacteria are referred to as probiotic bacteria. From a pig, we have isolated a Lactobacillus reuteri strain that produces an antimicrobial peptide (AMP). The peptide was purified and characterized, and it was unequivocally shown that the AMP was a well-defined degradation product obtained from the mucus adhesion-promoting protein (MapA); it was therefore termed AP48-MapA. This finding demonstrates how large proteins might inherit unexpected pleiotropic functions by conferring antimicrobial capacities on the producer. The MapA/AP48-MapA system is the first example where a large protein of an intestinal LAB is shown to give rise to such an AMP. It is also of particular interest that the protein that provides this AMP is associated with the binding of the bacterium producing it to the surface/lining of the gut. This finding gives us new perspective on how some probiotic bacteria may successfully compete in this environment and thereby contribute to a healthy microbiota.Mammals have a microbiota in their digestive tract that contains lactic acid bacteria (LAB). It has been increasingly evident that some of these lactic acid bacteria produce antimicrobial peptides that may contribute to the positive effect on their host. Such bacteria are often referred to as probiotics, and one of their important beneficial effects is their ability to produce antimicrobial compounds that prevent or interfere with the growth of pathogenic bacteria in the host.It is known that the fecal microflora of pigs/piglets is large and diverse and develops rapidly after birth. Lactobacillus reuteri is among the very first lactic acid bacteria that colonize the intestine of new-born piglets, and their numbers gradually increase until they become the most dominant LAB in pigs (5, 17, 28). Other lactobacilli that are also part of the gut microbiota of pigs include L. amylovorus, L. acidophilus, L. salivarius, and L. casei (4, 8). Probiotic isolates have been identified within all these species, and many of them are today used as food/feed supplements to support good health (4, 11, 27). An important part of the antimicrobial arsenal produced by lactic acid bacteria (LAB) is a group of peptides called bacteriocins, which are ribosomally synthesized antibiotic-like peptides (antimicrobial peptides [AMPs]) (3, 7, 19). The bacteriocins constitute a wide range of structurally different peptides that are divided into different classes and subclasses. Some are modified (the lantibiotics, or class I), while others are basically unmodified (class II) (3, 6, 19).Most bacteriocins are derived from prepeptides, each containing a short leader sequence (14 to 30 amino acids [aa]) which is cleaved off during the secretion of the mature peptide (19). In recent years, a new group of AMPs have been recognized (18); these are different from regular bacteriocins in that they are derived from larger proteins through specific degradations, leading to a defined peptide possessing antimicrobial activity. Such antimicrobial peptides have been known for a long time in mammalian systems. For instance, lactoferrin, a protein in milk, is readily degraded to a specific antimicrobial peptide through heat, acid treatment, or pepsin digestion (14, 24, 26). Defined histone fragments with antimicrobial properties have been isolated from different eukaryotic species (1, 2, 15, 21, 23), and a few antimicrobial peptides derived from larger proteins have been isolated in bacteria, including Helicobacter pylori (22), propionic acid bacteria (9, 10), and Clostridium beijerinckii (13). Such antimicrobial peptides are most likely formed by proteolytic degradation during cell proliferation or death.  相似文献   
123.
The effect of arbuscular mycorrhizal fungi (AMF) on olive (Olea europaea) growth and development was followed for 4 years after transplanting in irrigated commercial orchards under arid conditions. Sites I and II were irrigated with saline water (EC?=?4.5 dS/m). In site I, the soil was infested with Verticillium dahliae and olive varieties ‘Picual’ (Verticillium susceptible) and ‘Barnea’ (relatively Verticillium tolerant) were tested. In site II, the soil was virgin soil (previously non-cultivated soil) and olive varieties ‘Souri’ and ‘Barnea’ were tested. Plants for all sites were inoculated in the nursery with Glomus intraradices alone or in a mixture with G. mosseae. Relative to non-inoculated trees, AMF colonization enhanced vegetative growth, expressed as tree height and trunk circumference, at all sites. At first commercial harvest, AMF-treated trees had higher fruit and oil yields than non-mycorrhitic controls. Under saline water irrigation, differences between inoculated and non-inoculated treatments were reduced in the slow-growing ‘Souri’ but remained apparent in the modern fast-growing ‘Barnea’. AMF colonization did not appear to improve tolerance of either ‘Picual’ or ‘Barnea’ to V. dahliae, and both were more susceptible than the non-inoculated controls. Thus inoculation of olive plants with AMF improves transplant growth and adaptation in arid areas during the first 3 years of growth and until the first commercial harvesting season.  相似文献   
124.
Laboratory adaptive evolution studies can provide key information to address a wide range of issues in evolutionary biology. Such studies have been limited thus far by the inability of workers to readily detect mutations in evolved microbial strains on a genome scale. This limitation has now been overcome by recently developed genome sequencing technology that allows workers to identify all accumulated mutations that appear during laboratory adaptive evolution. In this study, we evolved Escherichia coli K-12 MG1655 with a nonnative carbon source, l-1,2-propanediol (l-1,2-PDO), for ∼700 generations. We found that (i) experimental evolution of E. coli for ∼700 generations in 1,2-PDO-supplemented minimal medium resulted in acquisition of the ability to use l-1,2-PDO as a sole carbon and energy source so that the organism changed from an organism that did not grow at all initially to an organism that had a growth rate of 0.35 h−1; (ii) six mutations detected by whole-genome resequencing accumulated in the evolved E. coli mutant over the course of adaptive evolution on l-1,2-PDO; (iii) five of the six mutations were within coding regions, and IS5 was inserted between two fuc regulons; (iv) two major mutations (mutations in fucO and its promoter) involved in l-1,2-PDO catabolism appeared early during adaptive evolution; and (v) multiple defined knock-in mutant strains with all of the mutations had growth rates essentially matching that of the evolved strain. These results provide insight into the genetic basis underlying microbial evolution for growth on a nonnative substrate.Evolution of microorganisms in the laboratory offers the possibility of relating acquired mutations to increased fitness of the organism under the conditions used. Complete identification of mutations over defined evolutionary periods is necessary to fully understand the evolutionary change because spontaneous mutation is the foundational biological source of phenotypic variation (52). Since microbes grow rapidly and have large population sizes and since ancestors can be preserved by freezing them for later direct comparison of evolved types, laboratory evolution using microorganisms provides a powerful context for studying the genetics of evolutionary adaptation (5, 12, 14, 19, 43) due to the advent of new technologies for genome-wide detection of mutations (30, 33). A large number of studies of experimental evolution with various microbes have been carried out using natural carbon sources, especially glucose (12, 19, 47, 55), since glucose is the preferred carbon and energy source for most bacteria and eukaryotic cells (4, 50). Recently, a few studies have investigated the adaptive evolution of Escherichia coli at the genetic and metabolic levels with gluconeogenic carbon sources, including lactate (34) and glycerol (20). Compared to experimental evolution with native carbon sources, microorganisms might be more capable of adapting to various nonnative carbon compounds because microorganisms are able to adapt to environmental changes by using a number of strategies to meet their growth requirements and to achieve optimal overall performance in the new conditions (20, 21, 34). However, a comprehensive analysis of the genetic basis of adaptation to nonnative carbon sources has not been performed.The K-12 MG1655 strain of E. coli is not able to utilize l-1,2-propanediol (l-1,2-PDO) as a sole carbon and energy source. However, E. coli has an enzyme, l-1,2-PDO oxidoreductase (POR), which is involved in fermentative l-fucose metabolism and catalyzes the oxidation of l-1,2-PDO to l-lactaldehyde (Fig. (Fig.11 A). The E. coli POR is encoded by the fucO gene of the fucose regulon (11, 23), which consists of two divergent operons (fucAO and fucPIKUR) under positive control of FucR (Fig. (Fig.1B)1B) (9). FucR is activated by fuculose-1-phosphate, which is the inducer of the fuc regulon (3). In E. coli, fucose metabolism is initiated by the sequential actions of a permease (encoded by fucP), an isomerase (encoded by fucI), a kinase (encoded by fucK), and an aldolase (encoded by fucA). The aldolase catalyzes the cleavage of fuculose-1-phosphate to dihydroxyacetone phosphate and l-lactaldehyde. Under aerobic respiratory conditions, l-lactaldehyde is oxidized to l-lactate by an NAD-linked aldehyde dehydrogenase with broad functions (encoded by aldA). l-Lactate is then oxidized to pyruvate by a flavin adenine dinucleotide (FAD)-dependent l-lactate dehydrogenase (encoded by the lldD gene of the lldPRD operon [formerly the lctPRD operon]). Under anaerobic fermentative conditions, however, redox balance requires sacrifice of the l-lactaldehyde as a hydrogen acceptor at the expense of NADH (Fig. (Fig.1A).1A). This reaction is catalyzed by the POR. The terminal fermentation product, l-1,2-PDO, is then released by a permease (57). Although the POR catalyzes the oxidation of l-1,2-PDO to l-lactaldehyde, l-1,2-PDO cannot be utilized by wild-type (WT) E. coli as a sole carbon source under aerobic conditions because this compound cannot induce expression of the fuc regulon (11). Indeed, the fuc regulon was not expressed under any conditions when a database of 213 expression profiles produced in our laboratory was examined (38). Furthermore, even if the POR is expressed, it is oxidatively inactivated by a metal-catalyzed oxidation (MCO) mechanism (7).Open in a separate windowFIG. 1.Metabolic pathway and fuc regulon for l-fucose and l-1,2-PDO. (A) Metabolic pathway for l-fucose and l-1,2-PDO. In E. coli, fucose metabolism is initiated by the sequential actions of a permease (encoded by fucP), an isomerase (encoded by fucI), a kinase (encoded by fucK), and an aldolase (encoded by fucA). The aldolase catalyzes cleavage of fuculose-1-phosphate to dihydroxyacetone phosphate and l-lactaldehyde. Under aerobic respiratory conditions, the l-lactaldehyde is further oxidized by a series of enzymes to pyruvate, which subsequently enters central metabolism. Under anaerobic fermentative conditions, the l-lactaldehyde is reduced to l-1,2-PDO by oxidoreductase (encoded by fucO). (B) Genetic organization of the fuc regulon. The fuc regulon for l-fucose uptake and metabolism consists of two divergent operons, fucAO and fucPIKUR.Sridhara et al. (48) previously described E. coli mutants that were isolated from an E. coli K-12 derivative treated with the mutagen ethyl methanesulfonate and were able to grow aerobically on l-1,2-PDO as a sole carbon source. Previous studies showed that an IS5 insertion between the fucAO and fucPIKUR operons caused constitutive expression of the fucAO operon (9, 41) at a level that enabled the E. coli mutant to grow on l-1,2-PDO. In addition, mutations resulting in increased resistance to MCO under aerobic conditions were found in the N-terminal domain of POR (39). However, at present, little is known about the accumulated genome-wide mutations and their effects on the fitness in E. coli that has acquired the ability to use l-1,2-PDO because previous studies have focused on mutations in POR and its regulatory region.In an attempt to investigate the genetic basis of adaptive evolution of E. coli during growth on l-1,2-PDO, we first isolated an E. coli mutant able to use l-1,2-PDO using experimental evolution without a mutagen, and we then characterized this evolved E. coli mutant. Using whole-genome sequencing, we identified all accumulated mutations of the evolved E. coli mutant related to the known ancestor and also determined the fitness benefits and phenotypic behaviors of the mutations discovered. Our results offer a systematic view of the genetic basis underlying microbial adaptation to a nonnative substrate.  相似文献   
125.
Candida glabrata is one of the most frequent organisms isolated from superficial and invasive fungal infections, after Candida albicans. This organism also exhibits intrinsically low susceptibility to azole antifungals and treatment often fails. The microdilution method is not very practical for use in routine susceptibility testing in the clinical laboratory, thus necessitating the use of other methods. In this study, we compared the in vitro activity of five antifungal agents in three different groups (echinocandin, polyene and azole) against 50 C. glabrata isolates by broth microdilution and disk diffusion methods recommended by Clinical Laboratory Standards Institute CLSI M27-A3 and CLSI M44-A, respectively. All the isolates were susceptible to amphotericin B (100%) and 98% of the isolates were susceptible to caspofungin by the broth microdilution method. Within the azole group drugs, voriconazole was the most active followed by fluconazole and itraconazole in vitro. The highest rate of resistance was obtained against itraconazole with a high number of isolates defined as susceptible-dose dependent or resistant. Although the disk diffusion method is easy to use in clinical laboratories, it shows very poor agreement with the reference method for fluconazole and itraconazole against C. glabrata (8% and 14%, respectively).  相似文献   
126.
Uridines in the wobble position of tRNA are almost invariably modified. Modifications can increase the efficiency of codon reading, but they also prevent mistranslation by limiting wobbling. In mammals, several tRNAs have 5-methoxycarbonylmethyluridine (mcm5U) or derivatives thereof in the wobble position. Through analysis of tRNA from Alkbh8−/− mice, we show here that ALKBH8 is a tRNA methyltransferase required for the final step in the biogenesis of mcm5U. We also demonstrate that the interaction of ALKBH8 with a small accessory protein, TRM112, is required to form a functional tRNA methyltransferase. Furthermore, prior ALKBH8-mediated methylation is a prerequisite for the thiolation and 2′-O-ribose methylation that form 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) and 5-methoxycarbonylmethyl-2′-O-methyluridine (mcm5Um), respectively. Despite the complete loss of all of these uridine modifications, Alkbh8−/− mice appear normal. However, the selenocysteine-specific tRNA (tRNASec) is aberrantly modified in the Alkbh8−/− mice, and for the selenoprotein Gpx1, we indeed observed reduced recoding of the UGA stop codon to selenocysteine.tRNAs are frequently modified at the wobble uridine, a feature that is believed to either promote or restrict wobbling depending on the type of modification. In the case of eukaryotes, the functions of wobble uridine modifications have been studied in the greatest detail in Saccharomyces cerevisiae. Here, the modifications 5-methoxycarbonylmethyluridine (mcm5U), 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U), and 5-carbamoylmethyluridine (ncm5U) or its 2′-O-ribose-methylated form, ncm5Um, are found in 11 out of 13 wobble uridine-containing tRNAs (22). mcm5U and mcm5s2U are mostly found in “split” codon boxes, where the pyrimidine- and purine-ending codons encode different amino acids, while ncm5U is found in “family” codon boxes, where all four codons encode a single amino acid. Early reports based on in vitro experiments suggested that wobble nucleosides, such as mcm5U, ncm5U, and their derivatives, may restrict wobbling (17, 37, 45), but the results of a recent comprehensive study performed in vivo in S. cerevisiae show that such modifications can improve the reading both of the cognate, A-ending codons and of the wobble, G-ending codons (22). This may suggest that the primary role of these modified nucleosides is to improve translational efficiency rather than to restrict wobbling.The characterization of wobble uridine modifications in higher eukaryotes is very limited, and little is known about the enzymes that introduce them. In mammals, mcm5s2U has been found in the wobble position of tRNAGlu(UUC), tRNALys(UUU), and tRNAArg(UCU) (40). Unlike yeast, mammals possess a specialized tRNA that is responsible for recoding the UGA stop codon to insert the 21st amino acid, selenocysteine (Sec). The mammalian tRNASec population consists of two subpopulations containing either mcm5U or the ribose-methylated derivative mcm5Um in the wobble position. Interestingly, ribose methylation of mcm5U in tRNASec appears to have a role in regulating selenoprotein synthesis, as the expression of some selenoproteins, such as glutathione peroxidase 1 (Gpx1), appears to be promoted by mcm5Um-containing tRNASec (5, 7, 9, 32).Some years ago, the Escherichia coli AlkB protein was found to be a 2-oxoglutarate- and iron-dependent dioxygenase capable of demethylating the lesions 1-methyladenosine and 3-methylcytosine in DNA (13, 42). Multicellular organisms generally possess several different AlkB homologues (ALKBH), and bioinformatics analysis has identified eight different mammalian ALKBH proteins, denoted ALKBH1 to ALKBH8 in humans and Alkbh1 to Alkbh8 in mice, as well as the somewhat-less-related, obesity-associated FTO protein (2, 16, 30). Among the ALKBH proteins of unknown function, ALKBH8 is the only one containing additional annotated protein domains. Here, the AlkB domain is localized between an N-terminal RNA recognition motif (RRM) and a C-terminal methyltransferase (MT) domain. Interestingly, the MT domain has sequence homology to the S. cerevisiae tRNA methyltransferase Trm9, which has been shown to catalyze the methyl esterification of modified wobble uridine (U34) residues of tRNAArg and tRNAGlu, resulting in the formation of mcm5U and mcm5s2U, respectively (23, 43). Until recently, human ALKBH8 was incorrectly annotated in the protein sequence database, and another human protein, KIAA1456, has been designated the human Trm9 homologue (3, 23).We have generated for this study Alkbh8-targeted mice that lack exons critical for both the MT and AlkB activities of Alkbh8. The mice did not display any overt phenotype, but tRNA from these mice was completely devoid of mcm5U, mcm5s2U, and mcm5Um, and the relevant tRNA isoacceptors instead contained the acid form 5-carboxymethyluridine (cm5U) and/or the amide forms ncm5U/ncm5s2U. Furthermore, we show that recombinant ALKBH8 and TRM112 form a heterodimeric complex capable of catalyzing the methyl esterification of cm5U and cm5s2U to mcm5U and mcm5s2U, respectively. In agreement with the involvement of mcm5Um in selenoprotein synthesis, we observed a reduced level of Gpx1 in the Alkbh8−/− mice, and tRNASec from these mice showed a reduced ability to decode the UGA stop codon to Sec.  相似文献   
127.
We have recently reported a new N-methylaminooxy-based prosthetic group for the site-selective introduction of 1?F-fluorine under mild acidic aqueous conditions into model peptides functionalized with a Michael acceptor moiety. To further investigate the utility of this methodology, the radiosynthesis of two cyclic RGD peptides was carried out, and in vivo biodistribution and microPET studies were performed in tumor-bearing mice. A cyclic RGD peptide was functionalized with the Michael acceptors trans-β-nitrostyrene carboxylic acid and 3-vinylsulfonylpropionic acid. Radiolabeling was then performed with the prosthetic group O-(2-(2-[1?F]fluoroethoxy)ethyl)-N-methylhydroxylamine (1?F-FENMA) yielding the 1?F-conjugates in moderate yields (8.5-12%). Biodistribution, blocking, and microPET imaging studies were performed in a mouse xenograft model. The vinylsulfonyl-modified conjugate demonstrated good in vitro plasma stability. Biodistribution and microPET studies revealed excellent tumor uptake with low background in key organs and renal elimination as the predominant route of excretion. Blocking studies with coinjected nonlabeled RGD peptide confirmed the in vivo specificity for the integrin α(v)β?. On the other hand, 1?F-FENMA-nitrostyrene-RGD, although stable at conjugation pH 5, was found to rapidly degrade at physiological pH through loss of the 1?F-prosthetic group.  相似文献   
128.

Background  

Recent surveys of eukaryote 18S rDNA diversity in marine habitats have uncovered worldwide distribution of the heterotrophic eukaryote phylum Telonemia. Here we investigate the diversity and geographic distribution of Telonemia sequences by in-depth sequencing of several new 18S rDNA clone libraries from both marine and freshwater sites by using a Telonemia-specific PCR strategy.  相似文献   
129.

Background

Iodine deficiency is a global problem representing the most common preventable cause of mental retardation. Recently, the impact of subtle deficiencies in iodine intake on children and pregnant women has been questioned. This study was designed to compare hypothyroidism among infants born to US military families in countries of varied iodine nutrition status.

Methods

A cohort design was used to analyze data from the Department of Defense Birth and Infant Health Registry for infants born in 2000-04 (n = 447,691). Hypothyroidism was defined using ICD-9-CM codes from the first year of life (n = 698). The impact of birth location on hypothyroidism was assessed by comparing rates in Germany, Japan, and US territories with the United States, while controlling for infant gender, plurality, gestational age, maternal age, maternal military status, and military parent's race/ethnicity.

Results

Hypothyroidism did not vary by birth location with adjusted odds ratios (OR) as follows: Germany (OR 0.82, [95% CI 0.50, 1.35]), Japan (OR 0.67, [95% CI 0.37, 1.22]), and US territories (OR 1.29, [95% CI 0.57, 2.89]). Hypothyroidism was strongly associated with preterm birth (OR 5.44, [95% CI 4.60, 6.42]). Hypothyroidism was also increased among infants with civilian mothers (OR 1.24, [95% CI 1.00, 1.54]), and older mothers, especially ages 40 years and older (OR 2.09, [95% CI 1.33, 3.30]).

Conclusions

In this study, hypothyroidism in military-dependent infants did not vary by birth location, but was associated with other risk factors, including preterm birth, civilian maternal status, and advanced maternal age.  相似文献   
130.
Art v 1, the major pollen allergen of the composite plant mugwort (Artemisia vulgaris) has been identified recently as a thionin-like protein with a bulky arabinogalactan-protein moiety. A close relative of mugwort, ragweed (Ambrosia artemisiifolia) is an important allergen source in North America, and, since 1990, ragweed has become a growing health concern in Europe as well. Weed pollen-sensitized patients demonstrated IgE reactivity to a ragweed pollen protein of apparently 29–31 kDa. This reaction could be inhibited by the mugwort allergen Art v 1. The purified ragweed pollen protein consisted of a 57-amino acid-long defensin-like domain with high homology to Art v 1 and a C-terminal proline-rich domain. This part contained hydroxyproline-linked arabinogalactan chains with one galactose and 5 to 20 and more α-arabinofuranosyl residues with some β-arabinoses in terminal positions as revealed by high field NMR. The ragweed protein contained only small amounts of the single hydroxyproline-linked β-arabinosyl residues, which form an important IgE binding determinant in Art v 1. cDNA clones for this protein were obtained from ragweed flowers. Immunological characterization revealed that the recombinant ragweed protein reacted with >30% of the weed pollen allergic patients. Therefore, this protein from ragweed pollen constitutes a novel important ragweed allergen and has been designated Amb a 4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号