首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   10篇
  144篇
  2024年   1篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2019年   6篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   11篇
  2013年   4篇
  2012年   10篇
  2011年   8篇
  2010年   7篇
  2009年   6篇
  2008年   15篇
  2007年   7篇
  2006年   7篇
  2005年   7篇
  2004年   9篇
  2003年   7篇
  2002年   9篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1987年   1篇
  1980年   1篇
  1972年   1篇
排序方式: 共有144条查询结果,搜索用时 0 毫秒
61.
    
Lumbar spinal canal stenosis (LSCS) is a degenerative disease observed by hypertrophy of the ligamentum flavum (LF) that cause compression of the lumbar neural content. Diabetes mellitus (DM) is a risk factor for the disease and we have shown previously that DM increases the fibrosis and elastic fiber loss in patients with LSCS. The purpose of this study was to find the proteins that play a role in the development of this clinical pathogenesis and the effect of DM on protein expression. LF tissue retrieved from patients diagnosed with LSCS, some were also diagnosed with DM, were compared with LF from patients diagnosed with herniated nucleus pulposus (HNP). The tissues were analyzed by mass spectrometry for proteins profile alteration. We found that LF of LSCS/DM patients exhibited significantly higher levels of proteoglycan proteins and latent transforming growth factor β-binding protein (LTBP2 and LTBP4). Additionally, an increase of HTRA serine protease 1 and insulin-like growth factor binding protein-5 were noted. The higher fibrosis was also associated with proteins related to inflammation and slower tissue repair. Collagen 6 and transforming growth factor inhibitor are related to activation of the anti-inflammatory M2 pathway that is associated with tissue repair. The decrease of these proteins expression in LSCS/DM is associated with increased levels and activation of M1 pro-inflammatory pathways. Interestingly, C3 and C4b members of the complement complex and mannose receptor-like protein (CLEC18) paralogous proteins were detectable solely at the LSCS/DM patients’ samples. Histology analysis shows that inflammatory was induced by the hyperglycemic conditions in diabetic patients involve in altering the matrix compositions. Thus, the protein profiles associated with inflammatory pathways affecting the LF suggested increasing susceptibility of developing the degeneration under hyperglycemic conditions.  相似文献   
62.
The ontogenetic changes of MAAs in the soft coral Heteroxenia fuscescens was studied in relation to their symbiotic state (azooxanthellate vs. zooxanthellate) under different temperature conditions in the Gulf of Eilat, northern Red Sea. The HPLC chromatograms for extracts of the planulae, azoo- and zooxanthellate primary polyps of H. fuscescens from all dates of collection yielded a single peak at 320 nm that has been identified as the compound palythine. Concentration of palythine in planulae at 23 °C was 7.57 ± 1 nmol mg− 1 protein and at 28 °C reached 17.29 ± 1 nmol × mg− 1 protein. Concentration of palythine in azooxanthellate primary polyps was 16.4 ± 3 nmol × mg− 1 protein and 28.37 ± 2.8 nmol × mg− 1 protein at 23 °C and 28 °C respectively. The palythine concentration for zooxanthellate primary polyps at 23 °C was 13 ± 3 nmol × mg− 1 protein and at 28 °C 32.7 ± 2 nmol mg− 1 protein. Palythine concentrations were significantly higher at 28 °C in the different animal groups and correlated linearly with the ambient collection temperature. This study shows for the first time that UVR and temperature act synergistically and affect the MAA levels of early life-history stages of soft corals.  相似文献   
63.
64.
65.
Oenococcus oeni is an acidophilic member of the Leuconostoc branch of lactic acid bacteria indigenous to wine and similar environments. O. oeni is commonly responsible for the malolactic fermentation in wine and due to its positive contribution is frequently used as a starter culture to promote malolactic fermentation. In collaboration with the Lactic Acid Bacteria Genome Consortium the genome sequence of O. oeni PSU-1 has been determined. The complete genome is 1,780,517 nt with a GC content of 38%. 1701 ORFs could be predicted from the sequence of which 75% were functionally classified. Consistent with its classification as an obligately heterofermentative lactic acid bacterium the PSU-1 genome encodes all the enzymes for the phosphoketolase pathway. Moreover, genes related to flavor modification in wine, such as malolactic fermentation capacity and citrate utilization were readily identified. The completion of the O. oeni genome marks a significant new phase for wine-related research on lactic acid bacteria in which the physiology, genetic diversity and performance of O. oeni starter cultures can be more rigorously examined.  相似文献   
66.
Xanthomonas campestris pv. vesicatoria is the causal agent of bacterial spot disease of tomato and pepper. The disease process is interactive and very intricate and involves a plethora of genes in the pathogen and in the host. In the pathogen, different genes are activated in response to the changing environment to enable it to survive, adapt, evade host defenses, propagate, and damage the host. To understand the disease process, it is imperative to broaden our understanding of the gene machinery that participates in it, and the most reliable way is to identify these genes in vivo. Here, we have adapted a recombinase-based in vivo expression technology (RIVET) to study the genes activated in X. campestris pv. vesicatoria during its interaction with one of its hosts, tomato. This is the first study that demonstrates the feasibility of this approach for identifying in vivo induced genes in a plant pathogen. RIVET revealed 61 unique X. campestris pv. vesicatoria genes or operons that delineate a picture of the different processes involved in the pathogen-host interaction. To further explore the role of some of these genes, we generated knockout mutants for 13 genes and characterized their ability to grow in planta and to cause disease symptoms. This analysis revealed several genes that may be important for the interaction of the pathogen with its host, including a citH homologue gene, encoding a citrate transporter, which was shown to be required for wild-type levels of virulence.  相似文献   
67.
Marrow-derived stroma cells (MSCs) can differentiate into multiple lineages including myogenic cells. However, the molecular mechanisms that direct MSCs to each differentiation pathway are poorly understood. Our study was designed to gain insights into the potential regulatory pathways that may assist in defining MSC commitment and differentiation properties. This will delineate the similarities or differences in the expression of genes between several cell types of mesenchymal origin. In this study, we established in vitro models, which allow following the discrete stages of differentiation of cardio- and myogenic-cells compared with MSC. Gene expression of each cell type at several stages of their differentiation path was evaluated by means of Affymetrix Gene Chips. Bioinformatic clustering of genes confirmed that with time in culture the myogenic cells ceased proliferating and commenced with differentiation. The expression profile analysis revealed the similarity and differences between myogenic cells and MSCs. This research compared at the molecular levels snapshots of gene expression patterns and elaborated on the overlap or differences between the analyzed cellular systems. Our results shed light on gene profiles of cells throughout their differentiation pathways. Establishing the gene signature of the differentiation process of cells that belong to several mesenchymal lineages may contribute to the understanding of molecular pathways that underlay mesenchymal tissue remodeling.  相似文献   
68.
This study presents molecular recognition method, which is based on specific force measurements between modified AFM (atomic force microscopy) tip and mammalian cell. The presented method allows recognition of specific cell surface proteins and receptor sites by nanometer accuracy level. Here we demonstrate specific recognition of membrane-bound Osteopontin (OPN) sites on preosteogenic cell membrane. By merging specific force detection map of the proteins and topography image of the cell, we create a new image (recognition image), which demonstrates the exact locations of the proteins relative to the cell membrane. The recognition results indicate the strong affinity between the modified tip and the target molecules, therefore, it enables the use of an AFM as a remarkable nanoscale tracking tool on the whole cell level.  相似文献   
69.
70.
Adipogenesis and increase in fat tissue mass are mechanosensitive processes and hence should be influenced by the mechanical properties of adipocytes. We evaluated subcellular effective stiffnesses of adipocytes using atomic force microscopy (AFM) and interferometric phase microscopy (IPM), and we verified the empirical results using finite element (FE) simulations. In the AFM studies, we found that the mean ratio of stiffnesses of the lipid droplets (LDs) over the nucleus was 0.83 ± 0.14, from which we further evaluated the ratios of LDs over cytoplasm stiffness, as being in the range of 2.5 to 8.3. These stiffness ratios, indicating that LDs are stiffer than cytoplasm, were verified by means of FE modeling, which simulated the AFM experiments, and provided good agreement between empirical and model-predicted structural behavior. In the IPM studies, we found that LDs mechanically distort their intracellular environment, which again indicated that LDs are mechanically stiffer than the surrounding cytoplasm. Combining these empirical and simulation data together, we provide in this study evidence that adipocytes stiffen with differentiation as a result of accumulation of LDs. Our results are relevant to research of adipose-related diseases, particularly overweight and obesity, from a mechanobiology and cellular mechanics perspectives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号