首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   11篇
  144篇
  2024年   1篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2019年   6篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   11篇
  2013年   4篇
  2012年   10篇
  2011年   8篇
  2010年   7篇
  2009年   6篇
  2008年   15篇
  2007年   7篇
  2006年   7篇
  2005年   7篇
  2004年   9篇
  2003年   7篇
  2002年   9篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1987年   1篇
  1980年   1篇
  1972年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
141.
We report here on two complementary experiments examining the effect of climate on morphological and life-history traits of antlion adults. We first examined whether body size and wing loading of emerging adults are plastic by raising larvae, collected from five antlion populations along Israel's sharp climatic gradient, in two environmental chambers simulating temperature and humidity of desert and Mediterranean climates. The variance in adult morphology was mostly related to body size, with adults of Mediterranean populations being larger than those of desert populations. Wing-to-thorax ratio was negatively correlated with temperature, compensating for the decrease in wing-beat frequency in colder environments. Differences between climatic treatments were significant for body size but not for the wing-to-thorax ratio, suggesting that body size is more plastic than the ratio between different body components. We next investigated how the exposure of antlion pupae to different climatic conditions influences the emerging adults. Adult body mass increased with final larval body mass at a faster rate when exposed to Mediterranean rather than desert conditions. Duration of the pupa stage was positively correlated with final larval mass, but only under Mediterranean conditions. Adult survival increased with initial mass (after eclosion), but was lower under desert conditions. Similarly, adults lost mass at a faster rate when exposed to desert conditions. Notably, the exposure of the pupae to varying climatic conditions had no effect on adult morphology. Climate is a major factor affecting insect life span and body size. Since body size is strongly linked to fecundity and survival, climate thus has a twofold effect on fitness: directly, and indirectly through body size.  相似文献   
142.
143.
    
Obesity has become one of the leading pathophysiologic disorders in recent years. Adipose tissue is the main tissue related to obesity and is known to play a role in various physiological complications, including type 2 diabetes. To better understand how the fat tissue develops, we used an in vitro live cell imaging system to quantify the adipogenesis by means of nondestructive digital imaging to monitor the accumulation of intracellular lipid droplets (LDs), a hallmark of adipogenesis, from the macro- to the micro-scale. Analyzing the cells’ shape at the single-cell level allows to quantify the cells’ shape change from a fibroblast to spherical morphology, indicating the start of adipogenesis. To reveal the molecular alterations, we applied a proteomic approach using high-resolution mass spectrometry of the proliferation, confluent fibroblasts and of adipocytes. During this process, we noted the reorganization of the cells’ extracellular matrix (ECM) network microenvironment from fibrillary collagen types I, III and V to collagens IV and VI, which affected the cells niche. The changes in ECM are translated for cytoskeleton remodeling according to cell fate-determining mechanisms. We quantified the cytoskeleton rearrangement of long oriented actin fibers or short cortical and disorganized fibers, associated with LDs accumulation in adipocytes. Developing in vitro models and analytical methods enable us to study differentiation into adipocytes that will advance our understanding regarding the niche conditions that affect adipogenesis. Consequently, this will enable the development of new modalities to prevent obesity and its deleterious outcomes and to develop potential treatments to battle pathophysiology-related diseases.  相似文献   
144.
    

Background

Elderly adults should avoid medications with anticholinergic effects since they may increase the risk of adverse events, including falls, delirium, and cognitive impairment. However, data on anticholinergic burden are limited in subpopulations, such as individuals with Parkinson disease (PD). The objective of this study was to determine whether anticholinergic burden was associated with adverse outcomes in a PD inpatient population.

Methods

Using the Cerner Health Facts® database, we retrospectively examined anticholinergic medication use, diagnoses, and hospital revisits within a cohort of 16,302 PD inpatients admitted to a Cerner hospital between 2000 and 2011. Anticholinergic burden was computed using the Anticholinergic Risk Scale (ARS). Primary outcomes were associations between ARS score and diagnosis of fracture and delirium. Secondary outcomes included associations between ARS score and 30-day hospital revisits.

Results

Many individuals (57.8%) were prescribed non-PD medications with moderate to very strong anticholinergic potential. Individuals with the greatest ARS score (≥4) were more likely to be diagnosed with fractures (adjusted odds ratio (AOR): 1.56, 95% CI: 1.29–1.88) and delirium (AOR: 1.61, 95% CI: 1.08–2.40) relative to those with no anticholinergic burden. Similarly, inpatients with the greatest ARS score were more likely to visit the emergency department (adjusted hazard ratio (AHR): 1.32, 95% CI: 1.10–1.58) and be readmitted (AHR: 1.16, 95% CI: 1.01–1.33) within 30-days of discharge.

Conclusions

We found a positive association between increased anticholinergic burden and adverse outcomes among individuals with PD. Additional pharmacovigilance studies are needed to better understand risks associated with anticholinergic medication use in PD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号