首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   11篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2019年   8篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   11篇
  2013年   5篇
  2012年   10篇
  2011年   8篇
  2010年   7篇
  2009年   7篇
  2008年   15篇
  2007年   9篇
  2006年   7篇
  2005年   7篇
  2004年   9篇
  2003年   7篇
  2002年   9篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1987年   1篇
  1980年   1篇
  1972年   1篇
  1957年   1篇
  1949年   1篇
  1948年   1篇
排序方式: 共有153条查询结果,搜索用时 31 毫秒
111.
Cook RJ  Yi GY  Lee KA  Gladman DD 《Biometrics》2004,60(2):436-443
Clustered progressive chronic disease processes arise when interest lies in modeling damage in paired organ systems (e.g., kidneys, eyes), in diseases manifest in different organ systems, or in systemic conditions for which damage may occur in several locations of the body. Multistate Markov models have considerable appeal for modeling damage in such settings, particularly when patients are only under intermittent observation. Generalizations are necessary, however, to deal with the fact that processes within subjects may not be independent. We describe a conditional Markov model in which the clustering in processes within subjects is addressed by the use of multiplicative random effects for each transition intensity. The random effects for the different transition intensities may be correlated within subjects, but are assumed to be independent for different subjects. We apply the mixed Markov model to a motivating data set of patients with psoriatic arthritis, and characterize the progressive course of damage in joints of the hand. A generalization to accommodate a subpopulation of "stayers" and extensions which facilitate regression are indicated and illustrated.  相似文献   
112.
Recently we suggested that direct interactions between voltage-gated K(+) channels and proteins of the exocytotic machinery, such as those observed between the Kv1.1/Kvbeta channel, syntaxin 1A, and SNAP-25 may be involved in neurotransmitter release. Furthermore, we demonstrated that the direct interaction with syntaxin 1A enhances the fast inactivation of Kv1.1/Kvbeta1.1 in oocytes. Here we show that G-protein betagamma subunits play a crucial role in the enhancement of inactivation by syntaxin 1A. The effect caused by overexpression of syntaxin 1A is eliminated in the presence of chelators of endogenous betagamma subunits in the whole cell and at the plasma membrane. Conversely, enhancement of inactivation caused by overexpression of beta(1)gamma(2) subunits is eliminated upon knock-down of endogenous syntaxin or its scavenging at the plasma membrane. We further show that the N terminus of Kv1.1 binds brain synaptosomal and recombinant syntaxin 1A and concomitantly binds beta(1)gamma(2); the binding of beta(1)gamma(2) enhances that of syntaxin 1A. Taken together, we suggest a mechanism whereby syntaxin and G protein betagamma subunits interact concomitantly with a Kv channel to regulate its inactivation.  相似文献   
113.
Spatial regulation of EGFR signaling by Sprouty2   总被引:3,自引:0,他引:3  
Ligand-induced activation of the epidermal growth factor receptor (EGFR) initiates multiple signal-transduction pathways as well as trafficking events that relocalize the receptors from the cell surface to intracellular endocytic compartments. Although there is growing awareness that endocytic transport can play a direct role in signal specification, relatively little is known about the molecular mechanisms underlying this link. Here we show that human Sprouty 2 (hSpry2), a protein that has been implicated in the negative regulation of receptor tyrosine kinase (RTK) signaling [1], interferes with the trafficking of activated EGFR specifically at the step of progression from early to late endosomes. This effect is mediated by the binding of hSpry2 to the endocytic regulatory protein, hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), and leads to a block in intracellular signal propagation. These observations suggest that EGFR signaling is controlled by a novel mechanism involving trafficking-dependent alterations in receptor compartmentalization.  相似文献   
114.
The depth of a cell of a multicellular organism is the number of cell divisions it underwent since the zygote, and knowing this basic cell property would help address fundamental problems in several areas of biology. At present, the depths of the vast majority of human and mouse cell types are unknown. Here, we show a method for estimating the depth of a cell by analyzing somatic mutations in its microsatellites, and provide to our knowledge for the first time reliable depth estimates for several cells types in mice. According to our estimates, the average depth of oocytes is 29, consistent with previous estimates. The average depth of B cells ranges from 34 to 79, linearly related to the mouse age, suggesting a rate of one cell division per day. In contrast, various types of adult stem cells underwent on average fewer cell divisions, supporting the notion that adult stem cells are relatively quiescent. Our method for depth estimation opens a window for revealing tissue turnover rates in animals, including humans, which has important implications for our knowledge of the body under physiological and pathological conditions.  相似文献   
115.
116.
117.
Adipocyte fate commitment is characterized by morphological changes of fibroblastic pre-adipocyte cells, and specifically by accumulation of lipid droplets (LDs) as part of the adipogenesis metabolism. Formation of LDs indicates the production of triglycerides from glucose through an insulin-regulated glucose internalization process. In obesity, adipocytes typically become insulin resistant, and glucose transport into the cells is impaired, resulting in type 2 diabetes. In the present study, we monitored the adipogenesis in 3T3-L1 cultured cells exposed to high (450 mg/dL hyperglycemia) and low (100 mg/dL physiological) glucose concentrations, in a novel cell culture model system of diabesity. In addition to glucose conditions, cells were concurrently exposed to different substrate tensile strains (12% and control) based on our prior work which revealed that adipogenesis is accelerated in cultures subjected to static, chronic substrate tensile deformations. Phase-contrast images were taken throughout the adipogenesis process (3 weeks) and were analyzed by an image processing algorithm which quantitatively monitors cell differentiation and lipid accumulation (number of LDs per cell and their radius as well as cell size and shape). The results indicated that high glucose concentrations and substrate tensile strains delivered to adipocytes accelerated lipid production by 1.7- and 1.4-fold, respectively. In addition, significant changes in average cell projected area and in other morphological attributes were observed during the differentiation process. The importance of this study is in characterizing the adipogenesis parameters as potential read-outs that can predict the occurrence of insulin resistance in the development of diabesity.  相似文献   
118.
Autoproteolytic cleavage of the inactive acid ceramidase (AC) precursor into the active heterodimer exposes a free cysteine residue, leading us to study whether AC could be regulated by one or more members of the cystatin family. Co-expression of the full-length AC and cystatin SA (cysSA) cDNAs led to significant reduction of AC activity in the transfected cells. Expression of cysSA also inhibited endogenous AC activity in cells and increased ceramide. Conversely, cysSA siRNA expression led to elevated AC activity and reduction in ceramide. The effects of cysSA siRNA expression could be reversed by the addition of recombinant cysSA into the culture media. These results were consistent with detection of a physical interaction between AC and cysSA, assessed by co-immunoprecipitation and nickel-nitrilotriacetic acid affinity chromatography, and further supported by co-localization of the endogenous proteins using confocal microscopy. In vitro kinetic analysis of purified, recombinant AC and cysSA confirmed the transfection results and suggested a non-competitive type of inhibition with a K(i) in the low micromolar range. Processing of the AC precursor into the active form was not affected by cysSA expression, suggesting that it likely inhibits AC by allosteric interference. Computer modeling and expression studies identified several potential inhibitory domains in cysSA, including a small "AC-like" domain (identical to the AC cleavage site, TICT). Small peptides, synthesized with combinations of this and a "cystatin-like" domain (QXVXG), exhibited significant AC inhibition as well. Such peptide-based AC inhibitors could potentially be used to regulate AC activity in cancer cells that are known to overexpress this enzyme alone and in combination with conventional anti-cancer drugs.  相似文献   
119.

Background

Ebolavirus belongs to the family filoviridae and causes severe hemorrhagic fever in humans with 50–90% lethality. Detailed understanding of how the viruses attach to and enter new host cells is critical to development of medical interventions. The virus displays a trimeric glycoprotein (GP1,2) on its surface that is solely responsible for membrane attachment, virus internalization and fusion. GP1,2 is expressed as a single peptide and is cleaved by furin in the host cells to yield two disulphide-linked fragments termed GP1 and GP2 that remain associated in a GP1,2 trimeric, viral surface spike. After entry into host endosomes, GP1,2 is enzymatically cleaved by endosomal cathepsins B and L, a necessary step in infection. However, the functional effects of the cleavage on the glycoprotein are unknown.

Principal Findings

We demonstrate by antibody binding and Hydrogen-Deuterium Exchange Mass Spectrometry (DXMS) of glycoproteins from two different ebolaviruses that although enzymatic priming of GP1,2 is required for fusion, the priming itself does not initiate the required conformational changes in the ectodomain of GP1,2. Further, ELISA binding data of primed GP1,2 to conformational antibody KZ52 suggests that the low pH inside the endosomes also does not trigger dissociation of GP1 from GP2 to effect membrane fusion.

Significance

The results reveal that the ebolavirus GP1,2 ectodomain remains in the prefusion conformation upon enzymatic cleavage in low pH and removal of the glycan cap. The results also suggest that an additional endosomal trigger is necessary to induce the conformational changes in GP1,2 and effect fusion. Identification of this trigger will provide further mechanistic insights into ebolavirus infection.  相似文献   
120.
Myofiber cultures give rise to myogenic as well as to non-myogenic cells. Whether these myofiber-associated non-myogenic cells develop from resident stem cells that possess mesenchymal plasticity or from other stem cells such as mesenchymal stem cells (MSCs) remain unsolved. To address this question, we applied a method for reconstructing cell lineage trees from somatic mutations to MSCs and myogenic and non-myogenic cells from individual myofibers that were cultured at clonal density.Our analyses show that (i) in addition to myogenic progenitors, myofibers also harbor non-myogenic progenitors of a distinct, yet close, lineage; (ii) myofiber-associated non-myogenic and myogenic cells share the same muscle-bound primordial stem cells of a lineage distinct from bone marrow MSCs; (iii) these muscle-bound primordial stem-cells first part to individual muscles and then differentiate into myogenic and non-myogenic stem cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号