首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1729篇
  免费   151篇
  1880篇
  2024年   2篇
  2023年   6篇
  2022年   13篇
  2021年   26篇
  2020年   18篇
  2019年   18篇
  2018年   29篇
  2017年   27篇
  2016年   33篇
  2015年   83篇
  2014年   88篇
  2013年   88篇
  2012年   104篇
  2011年   94篇
  2010年   69篇
  2009年   72篇
  2008年   102篇
  2007年   102篇
  2006年   110篇
  2005年   111篇
  2004年   95篇
  2003年   93篇
  2002年   93篇
  2001年   79篇
  2000年   70篇
  1999年   58篇
  1998年   17篇
  1997年   14篇
  1996年   13篇
  1995年   12篇
  1994年   13篇
  1993年   9篇
  1992年   21篇
  1991年   13篇
  1990年   15篇
  1989年   11篇
  1988年   7篇
  1987年   6篇
  1986年   9篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1975年   3篇
  1972年   4篇
  1969年   4篇
  1965年   1篇
  1963年   1篇
排序方式: 共有1880条查询结果,搜索用时 15 毫秒
41.
Sphingosine-1-phosphate (S1P) is considered to be an important regulator of diverse biological processes acting as a natural ligand to EDG receptors. As a preliminary study to develop potent and selective agonist and antagonist for EDG receptors, we report synthesis of S1P stereoisomers and analogues and their binding affinities to EDG-1, -3, and -5.  相似文献   
42.
The combination of ascorbate, transition metal ions, and hydrogen peroxide (H(2)O(2)) is an efficient hydroxyl radical generating system called "the Udenfriend system." Although the pro-oxidant role of ascorbate in this system has been well characterized in vitro, it is uncertain whether ascorbate also acts as a pro-oxidant under physiological conditions. To address this question, human plasma, used as a representative biological fluid, was either depleted of endogenous ascorbate with ascorbate oxidase, left untreated, or supplemented with 25 microM-1 mM ascorbate. Subsequently, the plasma samples were incubated at 37 degrees C with 50 microM-1 mM iron (from ferrous ammonium sulfate), 60 or 100 microM copper (from cupric sulfate), and/or 200 microM or 1 mM H(2)O(2). Although endogenous and added ascorbate was depleted rapidly in the presence of transition metal ions and H(2)O(2), no cholesterol ester hydroperoxides or malondialdehyde were formed, i.e., ascorbate protected against, rather than promoted, lipid peroxidation. Conversely, depletion of endogenous ascorbate was sufficient to cause lipid peroxidation, the rate and extent of which were enhanced by the addition of metal ions but not H(2)O(2). Ascorbate also did not enhance protein oxidation in plasma exposed to metal ions and H(2)O(2), as assessed by protein carbonyl formation and depletion of reduced thiols. Interestingly, neither the rate nor the extent of endogenous alpha-tocopherol oxidation in plasma was affected by any of the treatments. Our data show that even in the presence of redox-active iron or copper and H(2)O(2), ascorbate acts as an antioxidant that prevents lipid peroxidation and does not promote protein oxidation in human plasma in vitro.  相似文献   
43.
We have investigated the protective effect of (-)-epigallocatechin gallate (EGCG) on alpha-amino-3-hydroxy-5-methyl-4-isoxazolo propionate (AMPA)-induced toxicity in cultured rat hippocampal neurons. Treatment of 24 h AMPA (10 microM) reduced the neuronal viability in both survival neuron counting and MTT reduction assay compared with control, with increase in cellular concentrations of hydrogen peroxide and malondialdehyde. These responses to AMPA were significantly blocked by co-treatments with EGCG (10 microM), which effect was very similar to the protective ability of a known antioxidant catalase (2000 U/ml). AMPA (50 microM) elicited the increase in intracellular calcium concentration ([Ca(2+)]i) on which EGCG significantly attenuated both peak amplitude and sustained nature of that [Ca(2+)]i increase in a dose-dependent manner. These data suggest that EGCG has a neuroprotective effect against AMPA through inhibition of AMPA-induced [Ca(2+)]i increase and consequent attenuation of reactive oxygen species production and lipid peroxidation as an antioxidant and a radical scavenger.  相似文献   
44.
The embryonal origin of hepatic stellate cells (HSCs), the principal cells in hepatic fibrogenesis, is still intriguing. To explore the origin and the differentiation of HSCs, we studied the expression of cytokeratin 18 (CK18) and 19 (CK19), the standard markers of simple epithelial cells, in cultured human HSCs. Hepatic stellate cells were isolated from five normal human livers. In immunofluorescence staining, both clone C-51 anti-CK18 antibody and clone RCK108 anti-CK19 antibody labeled almost all stellate cells in the primary culture. Double immunofluorescence staining for cytokeratin/vimentin and cytokeratin/alpha-smooth muscle actin detected by confocal laser scanning microscopy clearly demonstrated the localization of cytokeratin immunoreactivity in human HSCs. During subsequent cultivation of human HSCs to the tenth passage, immunocytochemical staining and western blot analysis demonstrated gradually decreasing profiles of CK18 and CK19 expression. The progressive reduction of cytokeratin expression was further confirmed in a culture of clone cells originated from a single HSC. In conclusion, both CK18 and CK19 are expressed in cultured human HSCs, and the extent of their expression decreases gradually during prolonged cultivation. Our results suggest that HSCs may be of epithelial origin, and that they undergo the transdifferentiation from epithelial to mesenchymal phenotype during an activation process in vitro.  相似文献   
45.
Intestinal gene regulation involves mechanisms that direct temporal expression along the vertical and horizontal axes of the alimentary tract. Sucrase-isomaltase (SI), the product of an enterocyte-specific gene, exhibits a complex pattern of expression. Generation of transgenic mice with a mutated SI transgene showed involvement of an overlapping CDP (CCAAT displacement protein)-GATA element in colonic repression of SI throughout postnatal intestinal development. We define this element as CRESIP (colon-repressive element of the SI promoter). Cux/CDP interacts with SI and represses SI promoter activity in a CRESIP-dependent manner. Cux/CDP homozygous mutant mice displayed increased expression of SI mRNA during early postnatal development. Our results demonstrate that an intestinal gene can be repressed in the distal gut and identify Cux/CDP as a regulator of this repression during development.  相似文献   
46.
Hodgkin's disease (HD) is a lymphoid neoplasm characterized by a low frequency of malignant giant tumor cells, known as Hodgkin's and Reed-Sternberg (HRS) cells. Sequence analysis of the immunoglobulin heavy chain hypervariable region (IgH V) genes of HRS cells revealed multiple nucleotide substitutions, indicating somatic mutations, and suggested that HRS cells originate from germinal center B cells or their progeny. We previously reported that CD99-antisense transfected B cell lines led to the generation of cells with a HRS phenotype. Because it is considered that HRS cells in HD carry somatic mutations of the IgH genes, we assume that somatic mutation may take place in the IgH genes of HRS-like cells which do not express CD99. Here we report that CD99 downregulated BJAB cell line has several mutations in IgH V genes. The frequency of mutation was 5.2 x 10(-4) mut.bp(-1) out of total sequenced cell clones. On the contrary, control vector transfected BJAB cell line or CD99 downregulated IM9 cell line did not show any mutations on single strand conformational polymorphism (SSCP) and sequence analysis. We expect that the analysis of the mutation pattern of the CD99-deficient BJAB cell line might be the basis for the understanding of the molecular and cellular mechanism that regulate somatic mutation and B cell selection.  相似文献   
47.
48.
Catalytic drugs based on target-selective artificial proteases have been proposed as a new paradigm in drug design. Peptide-cleavage agents selective for pathogenic proteins of Alzheimer’s disease, type 2 diabetes mellitus or Parkinson’s disease have been prepared using the Co(III) aqua complex (Co(III)cyclen) of 1,4,7,10-tetraazacyclododecane as the catalytic center. In the present study, the Co(III) aqua complex (Co(III)oxacyclen) of 1-oxa-4,7,10-triazacyclododecane was examined in search of an improved catalytic center for peptide-cleavage agents. An X-ray crystallographic study of [Co(oxacyclen)(CO3)](ClO4), titration of Co(III)oxacyclen, and kinetic studies on the cleavage of albumin, γ-globulin, lysozyme, and myoglobin by Co(III)oxacyclen were carried out. Considerably higher proteolytic activity was observed for Co(III)oxacyclen in comparison with Co(III)cyclen, indicating that better target-selective artificial metalloproteases would be obtained using Co(III)oxacyclen as the catalytic center. The improved proteolytic activity was attributed to either steric effects or the increased Lewis acidity of the Co(III) center. The kinetic data also predicted that side effects due to the cleavage of nontarget proteins by a catalytic drug based on Co(III)oxacyclen would be insignificant.  相似文献   
49.
Much evidence suggests that astrocytes protect neurons against ischemic injury. Although astrocytes are more resistant to some insults than neurons, few studies offer insight into the real time changes of astrocytic protective functions with stress. Mitochondria are one of the primary targets of ischemic injury in astrocytes. We investigated the time course of changes in astrocytic ATP levels, plasma membrane potential, and glutamate uptake, a key protective function, induced by mitochondrial inhibition. Our results show that significant functional change precedes reduction in astrocytic viability with mitochondrial inhibition. Using the mitochondrial inhibitor fluorocitrate (FC, 0.25 mmol/L) that is preferentially taken by astrocytes we found that inhibition of astrocyte mitochondria increased vulnerability of co-cultured neurons to glutamate toxicity. In our studies, the rates of FC-induced astrocytic mitochondrial depolarization were accelerated in mixed astrocyte/neuron cultures. We hypothesized that the more rapid mitochondrial depolarization was promoted by an additional energetic demand imposed be the co-cultured neurons. To test this hypothesis, we exposed pure astrocytic cultures to 0.01-1 mmol/L aspartate as a metabolic load. Aspartate application accelerated the rates of FC-induced mitochondrial depolarization, and, at 1 mmol/L, induced astrocytic death, suggesting that strong energetic demands during ischemia can compromise astrocytic function and viability.  相似文献   
50.
Similarities between age-related changes in the canine and human brain have resulted in the general acceptance of the canine brain as a model of human brain aging. The hippocampus is essentially required for intact cognitive ability and appears to be particularly vulnerable to the aging process. We observed changes in ionized calcium-binding adapter molecule 1 (Iba-1, a microglial marker) immunoreactivity and protein levels in the hippocampal dentate gyrus and CA1 region of adult (2-3 years) and aged (10-12 years) dogs. We also observed the interferon-gamma (IFN-gamma), a pro-inflammatory cytokine, protein levels in these groups. In the dentate gyrus and CA1 region of the adult dog, Iba-1 immunoreactive microglia were well distributed and their processes were highly ramified. However, in the aged dog, the processes of Iba-1 immunoreactive microglia were hypertrophied in the dentate gyrus. Moreover, Iba-1 protein level in the dentate gyrus in the aged dog was higher than in the adult dog. IFN-gamma expression was increased in the dentate gyrus homogenates of aged dogs than adult dogs. In addition, we found that some neurons were positive to Fluoro-Jade B (a marker for neuronal degeneration) in the dentate polymorphic layer, but not in the hippocampal CA1 region in the aged dog. These results suggest that Iba-1 immunoreactive microglia are hypertrophied in the dentate gyrus in the aged dog.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号