首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2058篇
  免费   184篇
  国内免费   1篇
  2023年   3篇
  2022年   25篇
  2021年   44篇
  2020年   30篇
  2019年   41篇
  2018年   69篇
  2017年   54篇
  2016年   93篇
  2015年   126篇
  2014年   133篇
  2013年   176篇
  2012年   173篇
  2011年   187篇
  2010年   127篇
  2009年   120篇
  2008年   140篇
  2007年   128篇
  2006年   106篇
  2005年   115篇
  2004年   73篇
  2003年   65篇
  2002年   52篇
  2001年   33篇
  2000年   15篇
  1999年   17篇
  1998年   15篇
  1997年   8篇
  1996年   6篇
  1995年   8篇
  1994年   2篇
  1993年   5篇
  1992年   6篇
  1991年   2篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1984年   4篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1975年   3篇
  1974年   2篇
  1968年   3篇
  1967年   1篇
  1965年   3篇
  1962年   1篇
  1961年   1篇
  1960年   2篇
  1959年   1篇
排序方式: 共有2243条查询结果,搜索用时 15 毫秒
31.
The N-end rule pathway is a cellular proteolytic system that utilizes specific N-terminal residues as degradation determinants, called N-degrons. N-degrons are recognized and bound by specific recognition components (N-recognins) that mediate polyubiquitination of low-abundance regulators and selective proteolysis through the proteasome. Our earlier work identified UBR4/p600 as one of the N-recognins that promotes N-degron-dependent proteasomal degradation. In this study, we show that UBR4 is associated with cellular cargoes destined to autophagic vacuoles and is degraded by the lysosome. UBR4 loss causes multiple misregulations in autophagic pathways, including an increased formation of LC3 puncta. UBR4-deficient mice die during embryogenesis primarily due to defective vascular development in the yolk sac (YS), wherein UBR4 is associated with a bulk lysosomal degradation system that absorbs maternal proteins from the YS cavity and digests them into amino acids. Our results suggest that UBR4 plays a role not only in selective proteolysis of short-lived regulators through the proteasome, but also bulk degradation through the lysosome. Here, we discuss a possible mechanism of UBR4 as a regulatory component in the delivery of cargoes destined to interact with the autophagic core machinery.  相似文献   
32.
Prenatal exposure to alcohol has consistently been associated with adverse effects on neurodevelopment, which is collectively called fetal alcohol spectrum disorder (FASD). Increasing evidence suggest that prenatal exposure to alcohol increases the risk of developing attention deficit/hyperactivity disorder-like behavior in human. In this study, we investigated the behavioral effects of prenatal exposure to EtOH in offspring mice and rats focusing on hyperactivity and impulsivity. We also examined changes in dopamine transporter and MeCP2 expression, which may underlie as a key neurobiological and epigenetic determinant in FASD and hyperactive, inattentive and impulsive behaviors. Mouse or rat offspring born from dam exposed to alcohol during pregnancy (EtOH group) showed hyper locomotive activity, attention deficit and impulsivity. EtOH group also showed increased dopamine transporter and norepinephrine transporter level compared to control group in the prefrontal cortex and striatum. Prenatal exposure to EtOH also significantly decreased the expression of MeCP2 in both prefrontal cortex and striatum. These results suggest that prenatal exposure to EtOH induces hyperactive, inattentive and impulsive behaviors in rodent offspring that might be related to global epigenetic changes as well as aberration in catecholamine neurotransmitter transporter system.  相似文献   
33.
34.
Glutathione‐S‐transferases have been identified in all the living species examined so far, yet little is known about their function in marine organisms. In a previous report, the recently identified GST from Antarctic bivalve Laternula elliptica (LeGST) was classified into the rho class GST, but there are several unique features of LeGST that may justify reclassification, which could represent specific shellfish GSTs. Here, we determined the crystal structure of LeGST, which is a shellfish specific class of GST. The structural analysis showed that the relatively open and wide hydrophobic H‐site of the LeGST allows this GST to accommodate various substrates. These results suggest that the H‐site of LeGST may be the result of adaptation to their environments as sedentary organisms. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
35.
36.
37.
38.
Radioresistance is a major cause of decreasing the efficiency of radiotherapy for non-small cell lung cancer (NSCLC). To understand the radioresistance mechanisms in NSCLC, we focused on the radiation-induced Notch-1 signaling pathway involved in critical cell fate decisions by modulating cell proliferation. In this study, we investigated the use of Notch-1-regulating flavonoid compounds as novel therapeutic drugs to regulate radiosensitivity in NSCLC cells, NCI-H1299 and NCI-H460, with different levels of radioresistance. Rhamnetin and cirsiliol were selected as candidate Notch-1-regulating radiosensitizers based on the results of assay screening for activity and pharmacological properties. Treatment with rhamnetin or cirsiliol reduced the proliferation of NSCLC cells through the suppression of radiation-induced Notch-1 expression. Indeed, rhamnetin and cirsiliol increased the expression of tumor-suppressive microRNA, miR-34a, in a p53-dependent manner, leading to inhibition of Notch-1 expression. Consequently, reduced Notch-1 expression promoted apoptosis through significant down-regulation of the nuclear factor-κB pathway, resulting in a radiosensitizing effect on NSCLC cells. Irradiation-induced epithelial-mesenchymal transition was also notably attenuated in the presence of rhamnetin and cirsiliol. Moreover, an in vivo xenograft mouse model confirmed the radiosensitizing and epithelial-mesenchymal transition inhibition effects of rhamnetin and cirsiliol we observed in vitro. In these mice, tumor volume was significantly reduced by combinational treatment with irradiation and rhamnetin or cirsiliol compared with irradiation alone. Taken together, our findings provided evidence that rhamnetin and cirsiliol can act as promising radiosensitizers that enhance the radiotherapeutic efficacy by inhibiting radiation-induced Notch-1 signaling associated with radioresistance possibly via miR-34a-mediated pathways.  相似文献   
39.
c-Jun NH2-terminal kinases (JNKs) and phosphatidylinositol 3-kinase (PI3-K) play critical roles in chronic diseases such as cancer, type II diabetes, and obesity. We describe here the binding of quercetagetin (3,3′,4′,5,6,7-hydroxyflavone), related flavonoids, and SP600125 to JNK1 and PI3-K by ATP-competitive and immobilized metal ion affinity-based fluorescence polarization assays and measure the effect of quercetagetin on JNK1 and PI3-K activities. Quercetagetin attenuated the phosphorylation of c-Jun and AKT, suppressed AP-1 and NF-κB promoter activities, and also reduced cell transformation. It attenuated tumor incidence and reduced tumor volumes in a two-stage skin carcinogenesis mouse model.Our crystallographic structure determination data show that quercetagetin binds to the ATP-binding site of JNK1. Notably, the interaction between Lys55, Asp169, and Glu73 of JNK1 and the catechol moiety of quercetagetin reorients the N-terminal lobe of JNK1, thereby improving compatibility of the ligand with its binding site. The results of a theoretical docking study suggest a binding mode of PI3-K with the hydroxyl groups of the catechol moiety forming hydrogen bonds with the side chains of Asp964 and Asp841 in the p110γ catalytic subunit. These interactions could contribute to the high inhibitory activity of quercetagetin against PI3-K. Our study suggests the potential use of quercetagetin in the prevention or therapy of cancer and other chronic diseases.  相似文献   
40.
BsEXLX1 from Bacillus subtilis is the first discovered bacterial expansin as a structural homolog of a plant expansin, and it exhibited synergism with cellulase on the cellulose hydrolysis in a previous study. In this study, binding characteristics of BsEXLX1 were investigated using pretreated and untreated Miscanthus x giganteus in comparison with those of CtCBD3, a cellulose-binding domain from Clostridium thermocellum. The amounts of BsEXLX1 bound to cellulose-rich substrates were significantly lower than those of CtCBD3. However, the amounts of BsEXLX1 bound to lignin-rich substrates were much higher than those of CtCBD3. A binding competition assay between BsEXLX1 and CtCBD3 revealed that binding of BsEXLX1 to alkali lignin was not affected by the presence of CtCBD3. This preferential binding of BsEXLX1 to lignin could be related to root colonization in plants by bacteria, and the bacterial expansin could be used as a lignin blocker in the enzymatic hydrolysis of lignocellulose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号