首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2058篇
  免费   184篇
  国内免费   1篇
  2023年   3篇
  2022年   25篇
  2021年   44篇
  2020年   30篇
  2019年   41篇
  2018年   69篇
  2017年   54篇
  2016年   93篇
  2015年   126篇
  2014年   133篇
  2013年   176篇
  2012年   173篇
  2011年   187篇
  2010年   127篇
  2009年   120篇
  2008年   140篇
  2007年   128篇
  2006年   106篇
  2005年   115篇
  2004年   73篇
  2003年   65篇
  2002年   52篇
  2001年   33篇
  2000年   15篇
  1999年   17篇
  1998年   15篇
  1997年   8篇
  1996年   6篇
  1995年   8篇
  1994年   2篇
  1993年   5篇
  1992年   6篇
  1991年   2篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1984年   4篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1975年   3篇
  1974年   2篇
  1968年   3篇
  1967年   1篇
  1965年   3篇
  1962年   1篇
  1961年   1篇
  1960年   2篇
  1959年   1篇
排序方式: 共有2243条查询结果,搜索用时 15 毫秒
21.
For marine fish and invertebrates, larval dispersal plays a critical role in determining connections among source and sink habitats, and the lack of a predictive understanding of larval dispersal is a fundamental obstacle to the development of spatially explicit restoration plans for marine populations. We investigated larval dispersal patterns of eastern oyster in an estuary along the Northern Gulf of Mexico under different simulation scenarios of tidal amplitude and phase, river discharge, wind direction, and larval vertical migration, using a coupled biophysical transport model. We focused on the dispersal of larvae released from the commercially exploited (Cedar Point, CP) and non‐exploited (Bon Secour Bay, BSB) oyster populations. We found that high flushing rates through the dominant inlet prevented larval exchange between the commercially exploited and non‐exploited populations, resulting in negligible connectivity between them. Variations in tidal amplitude, river discharge and wind direction played a more important role in the amount of larvae retained in Mobile Bay when they are released from CP than from BSB. Under most of the scenarios, larvae from BSB were retained around the spawning area, while larvae from CP showed a predominant westward flow. Net sinking behavior of late‐stage larvae increased larval retention in the bay, but physical transport showed a higher impact in the amount of larvae retained. These findings have enhanced our understanding of larval dispersal of eastern oyster in a wide, shallow estuarine system, and been used to establish spatially explicit strategies for oyster restoration in the Mobile Bay system, Alabama.  相似文献   
22.
Antioxidant defenses within the lung are pivotal in preventing damage from oxidative toxicants. There have also been several reports with conflicting results on the antioxidant system during aging. In this study, we attempted to investigate age-related alterations in both antioxidant enzyme activities and thiobarbituric acid-reactive substances (TBARS), a product of lipid peroxidation, in the whole lung of control and sulfur dioxide (SO2) exposed rats of different age groups (3-, 12-, and 24-months-old). Swiss-Albino Male rats were exposed to 10 ppm SO2 1 hr/day, 7 days/week for 6 weeks. The antioxidant enzymes examined include Cu,Zn-superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST). A mixed pattern of age-associated alterations in antioxidant activities was observed. SOD, GSH-Px and GST activities were increased with age, but CAT activity was decreased. Lung SOD, GSH-Px and GST activities were also increased in response to SO2. The level of TBARS was increased with age. SO2 exposure stimulated lipid peroxide formation in the lung as indicated by an increase in the level of TBARS. These findings suggest that both aging and SO2 exposure may impose an oxidative stress to the body. We conclude that the increase in the activities of the antioxidant enzymes of the lung during aging, could be interpreted as a positive feedback mechanism in response to rising lipid peroxidation.  相似文献   
23.
Influenza viruses are respiratory pathogens that continue to pose a significantly high risk of morbidity and mortality of humans worldwide. Vaccination is one of the most effective strategies for minimizing damages by influenza outbreaks. In addition, rapid development and production of efficient vaccine with convenient administration is required in case of influenza pandemic. In this study, we generated recombinant influenza virus hemagglutinin protein 1 (sHA1) of 2009 pandemic influenza virus as a vaccine candidate using a well-established bacterial expression system and administered it into mice via sublingual (s.l.) route. We found that s.l. immunization with the recombinant sHA1 plus cholera toxin (CT) induced mucosal antibodies as well as systemic antibodies including neutralizing Abs and provided complete protection against infection with pandemic influenza virus A/CA/04/09 (H1N1) in mice. Indeed, the protection efficacy was comparable with that induced by intramuscular (i.m.) immunization route utilized as general administration route of influenza vaccine. These results suggest that s.l. vaccination with the recombinant non-glycosylated HA1 protein offers an alternative strategy to control influenza outbreaks including pandemics.  相似文献   
24.
The n-butanol (n-BuOH) fraction of Orostachys japonicus A. Berger (Crassulaceae) significantly inhibited calpain activity. Through the activity-guided isolation from the n-BuOH fraction, herbacetin 8-O-α-D-ribopyranoside (1), kaempferol (2), quercetin (3), afzelin (4), astragalin (5), isoquercetin (6) and quercitrin (7) were obtained. Their structures were determined by spectroscopic techniques. Among them, compound 3 and 5 had significant calpain inhibitory activities.  相似文献   
25.
A methanolic extract of dried leaves of Polygala japonica Houtt (Polygalaceae) significantly attenuated nitric oxide production in lipopolysaccharide-simulated BV2 microglia. Five anthraquinones chrysophanol (1), emodin (2), aloe-emodin (3), emodin 8-O-β-D-glucopyranoside (4) and trihydroxy anthraquinone (5), and four flavonoids kaempferol (6), chrysoeriol (7), kaempferol 3-gentiobioside (8) and isorhamnetin (9) were isolated from the methanolic extract using bioactivity-guided fractionation. Among them, compounds 14, 6 and 7 showed significant inhibitory effect on lipopolysaccharide-induced nitric oxide production in BV2 microglia at the concentrations ranging from 1.0 to 100.0 μM.  相似文献   
26.
Abstract

Hybridization of reported weakly active antiproliferative hit 5-amino-4-pyrimidinol derivative with 2-anilino-4-phenoxypyrimidines suggests a series of 2,5-diamino-4-pyrimidinol derivatives as potential antiproliferative agents. Few compounds belonging to the proposed series were reported as CSF1R/DAPK1 inhibitors as anti-tauopathies. However, the correlation between CSF1R/DAPK1 signalling pathways and cancer progression provides motives to reprofile them against cancer therapy. The compounds were synthesised, characterized, and evaluated against M-NFS-60 cells and a kinase panel which bolstered predictions of their antiproliferative activity and suggested the involvement of diverse molecular targets. Compound 6e, the most potent in the series, showed prominent broad-spectrum antiproliferative activity inhibiting the growth of hematological, NSCLC, colon, CNS, melanoma, ovarian, renal, prostate and breast cancers by 84.1, 52.79, 72.15, 66.34, 66.48, 51.55, 55.95, 61.85, and 60.87%, respectively. Additionally, it elicited an IC50 value of 1.97?µM against M-NFS-60 cells and good GIT absorption with Pe value of 19.0?±?1.1?×?10?6?cm/s (PAMPA-GIT). Molecular docking study for 6e with CSF1R and DAPK1 was done to help to understand the binding mode with both kinases. Collectively, compound 6e could be a potential lead compound for further development of anticancer therapies.  相似文献   
27.
For effective control of foot-and-mouth disease (FMD), the development of rapid diagnostic systems and vaccines are required against its etiological agent, FMD virus (FMDV). To accomplish this, efficient large-scale expression of the FMDV VP1 protein, with high solubility, needs to be optimized. We attempted to produce high levels of a serotype O FMDV VP1 epitope in Escherichia coli. We identified the subtype-independent serotype O FMDV VP1 epitope sequence and used it to construct a glutathione S-transferase (GST) fusion protein. For efficient production of the FMDV VP1 epitope fused to GST (VP1e–GST), four E. coli strains and three temperatures were examined. The conditions yielding the greatest level of VP1e–GST with highest solubility were achieved with E. coli BL21(DE3) at 25 °C. For high-level production, fed-batch cultures were conducted in 5-l bioreactors. When cells were induced at a high density and complex feeding solutions were supplied, approximately 11 g of VP1e–GST was obtained from a 2.9-l culture. Following purification, the VP1 epitope was used to immunize rabbits, and we confirmed that it induced an immune response.  相似文献   
28.

Background

Muscle satellite cells (MSCs) represent a devoted stem cell population that is responsible for postnatal muscle growth and skeletal muscle regeneration. An important characteristic of MSCs is that they encompass multi potential mesenchymal stem cell activity and are able to differentiate into myocytes and adipocytes. To achieve a global view of the genes differentially expressed in MSCs, myotube formed-cells (MFCs) and adipocyte-like cells (ALCs), we performed large-scale EST sequencing of normalized cDNA libraries developed from bovine MSCs.

Results

A total of 24,192 clones were assembled into 3,333 clusters, 5,517 singletons and 3,842contigs. Functional annotation of these unigenes revealed that a large portion of the differentially expressed genes are involved in cellular and signaling processes. Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis of three subsets of highly expressed gene lists (MSC233, MFC258, and ALC248) highlighted some common and unique biological processes among MSC, MFC and ALC. Additionally, genes that may be specific to MSC, MFC and ALC are reported here, and the role of dimethylarginine dimethylaminohydrolase2 (DDAH2) during myogenesis and hemoglobin subunit alpha2 (HBA2) during transdifferentiation in C2C12 were assayed as a case study. DDAH2 was up-regulated during myognesis and knockdown of DDAH2 by siRNA significantly decreased myogenin (MYOG) expression corresponding with the slight change in cell morphology. In contrast, HBA2 was up-regulated during ALC formation and resulted in decreased intracellular lipid accumulation and CD36 mRNA expression upon knockdown assay.

Conclusion

In this study, a large number of EST sequences were generated from the MSC, MFC and ALC. Overall, the collection of ESTs generated in this study provides a starting point for the identification of novel genes involved in MFC and ALC formation, which in turn offers a fundamental resource to enable better understanding of the mechanism of muscle differentiation and transdifferentiation.  相似文献   
29.
30.
Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号