首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57209篇
  免费   4769篇
  国内免费   50篇
  62028篇
  2023年   204篇
  2022年   599篇
  2021年   1023篇
  2020年   571篇
  2019年   764篇
  2018年   1153篇
  2017年   909篇
  2016年   1609篇
  2015年   2648篇
  2014年   2934篇
  2013年   3431篇
  2012年   4437篇
  2011年   4226篇
  2010年   2686篇
  2009年   2361篇
  2008年   3407篇
  2007年   3158篇
  2006年   2886篇
  2005年   2596篇
  2004年   2550篇
  2003年   2255篇
  2002年   1935篇
  2001年   1656篇
  2000年   1546篇
  1999年   1228篇
  1998年   532篇
  1997年   471篇
  1996年   406篇
  1995年   396篇
  1994年   310篇
  1993年   300篇
  1992年   644篇
  1991年   521篇
  1990年   474篇
  1989年   479篇
  1988年   407篇
  1987年   396篇
  1986年   321篇
  1985年   330篇
  1984年   271篇
  1983年   224篇
  1982年   189篇
  1981年   162篇
  1980年   161篇
  1979年   221篇
  1978年   201篇
  1977年   180篇
  1976年   174篇
  1974年   196篇
  1972年   156篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Protein arginine methyltransferase 5 (PRMT5) is a major enzyme responsible for generating monomethyl and symmetric dimethyl arginine in proteins. PRMT5 is essential for cell viability and development, and its overexpression is observed in a variety of cancers. In the present study, it is found that levels of PRMT5 protein and symmetric arginine dimethylation in colorectal cancer (CRC) tissues are increased compared to those in adjacent noncancerous tissues. Using immunoaffinity enrichment of methylated peptides combined with high‐resolution mass spectrometry, a total of 147 symmetric dimethyl‐arginine (SDMA) sites in 94 proteins are identified, many of which are RNA binding proteins and enzymes. Quantitative analysis comparing CRC and normal tissues reveals significant increase in the symmetric dimethylation of 70 arginine sites in 46 proteins and a decrease in that of four arginine sites in four proteins. Among the 94 proteins identified in this study, it is confirmed that KH‐type splicing regulatory protein is a target of PRMT5 and highly expressed in CRC tissues compared to noncancerous tissues. This study is the first comprehensive analysis of symmetric arginine dimethylation using clinical samples and extends the number of known in vivo SDMA sites. The data obtained are available via ProteomeXchange with the identifier PXD015653.  相似文献   
992.
Song  Hyerin  Lee  Won-Kyu  Lee  Jihye  Lee  Seung-Hyun  Song  Young Min  Kim  Kyujung  Choi  Jun-Hyuk 《Plasmonics (Norwell, Mass.)》2020,15(4):941-948

The angle-variable tunable optical filter was strictly fabricated by two strategies of nanoimprint-coupled metal nanopatterning with improved cost-effectiveness and accessibility. The tunable optical properties and the performances of two strategies were experimentally examined and turned out to be well matched to numerical results. Tunable properties are obtained by three factors: size of fabricated Ag nanodisks, incident illumination angle, and fabrication strategies. The resonant extinction peak shifts were identified to show a large increase along with the increase in fabricated Ag disk size and increase in the incidence angle of illumination. When comparing a fabrication strategy, it was confirmed that the sample fabricated by the strip-off method has better stability on color changes with a consistent dependency on the incident angle. The presented strategies of fabrication are technically viable for obtaining well-defined plasmonic nanostructures so that it has the feasibility to apply for fascinating optical applications including display or tunable optical filters.

  相似文献   
993.
Arteriovenous fistulas (AVFs) are the preferred vascular access for haemodialysis of patients suffering from end-stage renal disease, a worldwide public health problem. However, they are prone to a high rate of failure due to neointimal hyperplasia and stenosis. This study aimed to determine if osteopontin (OPN) was induced in hypoxia and if OPN could be responsible for driving AVF failure. Identification of new factors that participate in remodelling of AVFs is a challenge. Three cell lines representing the cells of the three layers of the walls of arteries and veins, fibroblasts, smooth muscle cells and endothelial cells, were tested in mono- and co-culture in vitro for OPN expression and secretion in normoxia compared to hypoxia after silencing the hypoxia-inducible factors (HIF-1α, HIF-2α and HIF-1/2α) with siRNA or after treatment with an inhibitor of NF-kB. None of the cells in mono-culture showed OPN induction in hypoxia, whereas cells in co-culture secreted OPN in hypoxia. The changes in oxygenation that occur during AVF maturation up-regulate secretion of OPN through cell-cell interactions between the different cell layers that form AVF, and in turn, these promote endothelial cell proliferation and could participate in neointimal hyperplasia.  相似文献   
994.
The growth arrest and DNA damage‐inducible beta (Gadd45β) protein have been associated with various cellular functions, but its role in progressive renal disease is currently unknown. Here, we examined the effect of Gadd45β deletion on cell proliferation and apoptosis, inflammation, and renal fibrosis in an early chronic kidney disease (CKD) mouse model following unilateral ureteral obstruction (UUO). Wild‐type (WT) and Gadd45β‐knockout (KO) mice underwent either a sham operation or UUO and the kidneys were sampled eight days later. A histological assay revealed that ablation of Gadd45β ameliorated UUO‐induced renal injury. Cell proliferation was higher in Gadd45β KO mouse kidneys, but apoptosis was similar in both genotypes after UUO. Expression of pro‐inflammatory cytokines after UUO was down‐regulated in the kidneys from Gadd45β KO mice, whereas UUO‐mediated immune cell infiltration remained unchanged. The expression of pro‐inflammatory cytokines in response to LPS stimulation decreased in bone marrow‐derived macrophages from Gadd45β KO mice compared with that in WT mice. Importantly, UUO‐induced renal fibrosis was ameliorated in Gadd45β KO mice unlike in WT mice. Gadd45β was involved in TGF‐β signalling pathway regulation in kidney fibroblasts. Our findings demonstrate that Gadd45β plays a crucial role in renal injury and may be a therapeutic target for the treatment of CKD.  相似文献   
995.
Elevated intraocular pressure (IOP) is a risk factor in glaucoma, a group of irreversible blinding diseases. Endogenous lipids may be involved in regulation of IOP homeostasis. We present comparative fold analysis of phospholipids and sphingolipids of aqueous humour and trabecular meshwork from human control vs primary open-angle glaucoma and mouse control (normotensive) vs ocular hypertensive state. The fold analysis in control vs disease state was based on ratiometric mass spectrometric data for above classes of lipids. We standardized in vitro assays for rapid characterization of lipids undergoing significant diminishment in disease state. Evaluation of lipids using in vitro assays helped select a finite number of lipids that may potentially expand cellular interstitial space embedded in an artificial matrix or increase fluid flow across a layer of cells. These assays reduced a number of lipids for initial evaluation using a mouse model, DBA/2J with spontaneous IOP elevation. These lipids were then used in other mouse models for confirmation of IOP lowering potential of a few lipids that were found promising in previous assessments. Our results provide selected lipid molecules that can be pursued for further evaluation and studies that may provide insight into their function.  相似文献   
996.
For efficient catalysis and electrocatalysis well‐designed, high‐surface‐area support architectures covered with highly dispersed metal nanoparticles with good catalyst‐support interactions are required. In situ grown Ni nanoparticles on perovskites have been recently reported to enhance catalytic activities in high‐temperature systems such as solid oxide cells (SOCs). However, the micrometer‐scale primary particles prepared by conventional solid‐state reactions have limited surface area and tend to retain much of the active catalytic element within the bulk, limiting efficacy of such exsolution processes in low‐temperature systems. Here, a new, highly efficient, solvothermal route is demonstrated to exsolution from smaller scale primary particles. Furthermore, unlike previous reports of B‐site exsolution, it seems that the metal nanoparticles are exsolved from the A‐site of these perovskites. The catalysts show large active site areas and strong metal‐support interaction (SMSI), leading to ≈26% higher geometric activity (25 times higher mass activity with 1.4 V of Eon‐set) and stability for oxygen‐evolution reaction (OER) with only 0.72 µg base metal contents compared to typical 20 wt% Ni/C and even commercial 20 wt% Ir/C. The findings obtained here demonstrate the potential design and development of heterogeneous catalysts in various low‐temperature electrochemical systems including alkaline fuel cells and metal–air batteries.  相似文献   
997.
Even though significant breakthroughs with over 18% power conversion efficiencies (PCEs) in polymer:non‐fullerene acceptor (NFA) bulk heterojunction organic solar cells (OSCs) have been achieved, not many studies have focused on acquiring a comprehensive understanding of the underlying mechanisms governing these systems. This is because it can be challenging to delineate device photophysics in polymer:NFA blends comprehensively, and even more complicated to trace the origins of the differences in device photophysics to the subtle differences in energetics and morphology. Here, a systematic study of a series of polymer:NFA blends is conducted to unify and correlate the cumulative effects of i) voltage losses, ii) charge generation efficiencies, iii) non‐geminate recombination and extraction dynamics, and iv) nuanced morphological differences with device performances. Most importantly, a deconvolution of the major loss processes in polymer:NFA blends and their connections to the complex BHJ morphology and energetics are established. An extension to advanced morphological techniques, such as solid‐state NMR (for atomic level insights on the local ordering and donor:acceptor π? π interactions) and resonant soft X‐ray scattering (for donor and acceptor interfacial area and domain spacings), provide detailed insights on how efficient charge generation, transport, and extraction processes can outweigh increased voltage losses to yield high PCEs.  相似文献   
998.
Li metal, which has a high theoretical specific capacity and low redox potential, is considered to the most promising anode material for next‐generation Li ion‐based batteries. However, it also exhibits a disadvantageous solid electrolyte interphase (SEI) layer problem that needs to be resolved. Herein, an advanced separator composed of reduced graphene oxide fiber attached to aramid paper (rGOF‐A) is introduced. When rGOF‐A is applied, F? anions, generated from the decomposition of the LiPF6 electrolyte during the SEI layer formation process form semi‐ionic C? F bonds along the surface of rGOF. As Li+ ions are plated, the “F‐doped” rGO surface induces the formation of LiF, which is known as a component of a chemically stable SEI, therefore it helps the Li metal anode to operate stably at a high current of 20 mA cm?2 with a high capacity of 20 mAh cm?2. The proposed rGOF‐A separator successfully achieves a stable SEI layer that could resolve the interfacial issues of the Li metal anode.  相似文献   
999.
A new class of layered cathodes, Li[NixCoyB1?x?y]O2 (NCB), is synthesized. The proposed NCB cathodes have a unique microstructure in which elongated primary particles are tightly packed into spherical secondary particles. The cathodes also exhibit a strong crystallographic texture in which the ab layer planes are aligned along the radial direction, facilitating Li migration. The microstructure, which effectively suppresses the formation of microcracks, improves the cycling stability of the NCB cathodes. The NCB cathode with 1.5 mol% B delivers a discharge capacity of 234 mAh g?1 at 0.1 C and retains 91.2% of its initial capacity after 100 cycles (compared to values of 229 mAh g?1 at 0.1 C and 78.8% for pristine Li[Ni0.9Co0.1]O2). This study shows the importance of controlling the microstructure to obtain the required cycling stability, especially for Ni‐rich layered cathodes, where the main cause of capacity fading is related to mechanical strain in their charged state.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号