首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1158篇
  免费   74篇
  1232篇
  2023年   2篇
  2022年   11篇
  2021年   16篇
  2020年   17篇
  2019年   32篇
  2018年   30篇
  2017年   25篇
  2016年   57篇
  2015年   61篇
  2014年   77篇
  2013年   97篇
  2012年   109篇
  2011年   97篇
  2010年   65篇
  2009年   59篇
  2008年   85篇
  2007年   81篇
  2006年   69篇
  2005年   68篇
  2004年   60篇
  2003年   46篇
  2002年   34篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1997年   4篇
  1996年   6篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1988年   1篇
  1965年   1篇
排序方式: 共有1232条查询结果,搜索用时 0 毫秒
101.
Dietary restriction (DR) has many beneficial effects, but the detailed metabolic mechanism remains largely unresolved. As diet is essentially related to metabolism, we investigated the metabolite profiles of urines from control and DR animals using NMR and LC/MS metabolomic approaches. Multivariate analysis presented distinctive metabolic profiles and marker signals from glucuronide and glycine conjugation pathways in the DR group. Broad profiling of the urine phase II metabolites with neutral loss scanning showed that levels of glucuronide and glycine conjugation metabolites were generally higher in the DR group. The up-regulation of phase II detoxification in the DR group was confirmed by mRNA and protein expression levels of uridinediphospho-glucuronosyltransferase and glycine-N-acyltransferase in actual liver tissues. Histopathology and serum biochemistry showed that DR was correlated with the beneficial effects of low levels of serum alanine transaminase and glycogen granules in liver. In addition, the Nuclear factor (erythroid-derived 2)-like 2 signaling pathway was shown to be up-regulated, providing a mechanistic clue regarding the enhanced phase II detoxification in liver tissue. Taken together, our metabolomic and biochemical studies provide a possible metabolic perspective for understanding the complex mechanism underlying the beneficial effects of DR.It has been known for more than 70 years that dietary restriction (DR)1 can extend the life span and delay the onset of age-related diseases, based on an early rodent study showing such effects (1). However, not until the 1980s was DR recognized as a good model for studying the mechanism of or inhibitory measures for aging (2). So far, extensive studies employing model organisms such as yeasts, nematodes, fruit flies, and rodents have shown that DR has beneficial effects in most of the species studied (for a review, see Ref. 3). Most notably, a recent 20-year-long study showed that monkeys, the species closest to humans, also benefit from DR similarly (4). Although there has not been (or could not have been) a systematic study on the effects of DR on the human life span, several longitudinal studies strongly suggest that changes in dietary intake can affect the life span and/or disease-associated marker values greatly (57).This inverse correlation between dietary intake and long-term health strongly indicates that DR''s effects should involve metabolism, and that DR elicits the reorganization of metabolic pathways. It also seems quite natural that something we eat should affect the body''s metabolism. Despite this seemingly straightforward relationship between diet and metabolism, the mechanisms underlying the beneficial effects of DR are anything but simple. Intensive efforts, spanning decades, to understand the mechanisms of DR have identified several genes that might mediate the effects of DR, such as mTOR, IGF-1, AMPK, and SIRT1 (for a review, see Ref. 8). Still, most of them are involved in early nutrient-sensing steps, and specific metabolic pathways, especially those at the final steps actually responsible for the effects of DR, are largely unknown.This might be at least partially due to the fact that previous studies have focused mostly on genomic or proteomic changes induced by DR, instead of looking at changes in metabolism or metabolites directly. Metabolomics, which has gained much interest in recent years (911), might be a good alternative for addressing the mechanistic uncertainty of DR''s effects, with the direct profiling of metabolic changes elicited by environmental factors. In contrast to genomics or proteomics, which often employ DNA or proteins extracted from particular tissues, metabolomics studies mostly employ body fluids (i.e. urine or blood), which can reflect the metabolic status of multiple organs, enabling investigations at a more systemic level. In particular, urine has been used extensively to study the mechanism of external stimuli (i.e. drugs or toxic insults) at most major target organs, such as the lung, kidney, liver, or heart (1218). Still, metabolomics studies of DR effects have been very limited. A few previous ones reported the changes in phenomenological urine metabolic markers with DR, without identification and/or validation of specific metabolic pathways reflected at the actual tissue or enzyme level (19, 20). Therefore, those studies fell short of providing a mechanistic perspective on DR''s effects. In addition, they employed either NMR or LC/MS approaches without validation across the two analytical platforms.Among the metabolic pathways that can directly affect the integrity of multiple organs, and hence long-term health, are phase II detoxification pathways (21). Typically, lipophilic endo/xenobiotics are metabolized first by a phase I system, such as cytochrome P450, which modifies the compounds so that they have hydrophilic functional groups for increased solubility. In many cases, though, these modifications might increase the reactivity of the compounds, leading to cellular damage. The phase II detoxification systems involve conjugation reactions that attach charged hydrophilic molecular moieties to reactive metabolites, thus facilitating the elimination of the harmful metabolites from body, ultimately reducing their toxicity (22). These systems are thus especially important in protecting cellular macromolecules, such as DNA and proteins, from reactive electrophilic or nucleophilic metabolites. The enzymes involved in these processes include glutathione-S-transferase (GST), sulfotransferase, glycine-N-acyltransferase (GLYAT), and uridinediphospho-glucuronosyltransferase (UGT), with the last enzyme being the most prevalent (23). The beneficial effects of phase II reactions have been particularly studied in relation to the mechanism of healthy dietary ingredients. It is well believed that many such foods can prevent cancers (hence the term “chemoprevention”) by inducing phase II detoxification systems (2426). Although DR also substantially reduces the incidence of cancers, the exact mechanism remains elusive.Here, we employed multi-platform metabolomics to obtain metabolic perspectives on the beneficial effects of DR on rats. Our results about urine metabolomics markers suggest that DR enhances the phase II detoxification pathway, which was confirmed by means of conjugation metabolite profiling and changes in mRNA/protein expression levels of phase II enzymes in actual liver tissues. A possible molecular mechanism was also addressed through the exploration of Nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) pathway activation upon DR. We believe the current study provides new metabolic insights into DR''s beneficial effects, as well as a workflow for studying DR''s effects from a metabolic perspective.  相似文献   
102.
A bacterial strain Paenibacillus polymyxa GS01 was isolated from the interior of the roots of Korean cultivars of ginseng (Panax ginseng C. A. Meyer). The cel44C-man26A gene was cloned from this endophytic strain. This 4,056-bp gene encodes for a 1,352-aa protein which, based on BLAST search homologies, contains a glycosyl hydrolase family 44 (GH44) catalytic domain, a fibronectin domain type 3, a glycosyl hydrolase family 26 (GH26) catalytic domain, and a cellulose-binding module type 3. The multifunctional enzyme domain GH44 possesses cellulase, xylanase, and lichenase activities, while the enzyme domain GH26 possesses mannanase activity. The Cel44C enzyme expressed in and purified from Escherichia coli has an optimum pH of 7.0 for cellulase and lichenase activities, but is at an optimum pH of 5.0 for xylanase and mannanase activities. The optimum temperature for enzymatic activity was 50°C for all substrates. No detectable enzymatic activity was detected for the Cel44C-Man26A mutants E91A and E222A. These results suggest that the amino acid residues Glu91 and Glu222 may play an important role in the glycosyl hydrolases activity of Cel44C-Man26A.  相似文献   
103.
Because it appears that oxidative stress and inflammation are implicated with disease pathogenesis in the diabetic brain, many researchers have used streptozotocin (STZ)-induced diabetic animals to study superoxide production and the effects of superoxide scavengers like Cu,Zn-superoxide dismutase (SOD1). However, many studies have been conducted without considering temporal changes after STZ injection. Interestingly, though SOD activities were not significantly different among the groups, SOD1 and 4-hydroxy-2-nonenal (4-HNE) immunoreactivities were significantly enhanced at 3 weeks after an STZ injection (STZ3w) versus only marginal levels in sham controls, whereas microglial activity was remarkably reduced in injected rats at this time. However, SOD1 immunoreactivity and microglial activities were only at the sham level at STZ4w. The present study provides important information concerning cell damage by ROS generated by STZ. Microglial response was found to be inactivated at STZ3w and neuronal cells (NeuN) showed a non-significant tendency to be reduced in number at STZ4w except in the dentate gyrus. We speculated that the above oxidative stress-related events should be accomplished at STZ3w in the brains of STZ-induced diabetes animal models. Therefore, the aim of the present study was to investigate chronological changes in SOD1 immunoreactivity associated with lipid peroxidation and inflammatory responses in the hippocampi of STZ-induced type I diabetic rats.  相似文献   
104.
Ceramide has been suggested to function as a mediator of exocytosis in response to the addition of a calcium ionophore from PC12 cells. Here, we show that although cell-permeable C(6)-ceramide or a calcium ionophore alone did not increase either the degranulation of serotonin or the release of arachidonic acid (AA) from RBL-2H3 cells, their combined effect significantly stimulated these processes in a time- and dose-dependent manner. This effect was inhibited by the presence of an exogenous calcium chelator and significantly suppressed by the CERK inhibitor (K1) and phospholipase A(2) (PLA(2)) inhibitors. Moreover, cytosolic PLA(2) GIVA (cPLA(2) GIVA) siRNA-transfected RBL-2H3 cells showed a lower level of serotonin release than scramble siRNA-transfected cells. Little is known about the regulation of degranulation proximal to the activation of cytosolic phospholipase A(2) GIVA, the initial rate-limiting step in RBL-2H3 cells. In this study, we suggest that CERK, ceramide-1-phosphate, and PLA(2) are involved in degranulation in a calcium-dependent manner. Inhibition of p44/p42 mitogen-activated protein kinase partially decreased the AA release, but did not affect degranulation. Furthermore, treatment of the cells with AA (ω-6, C20:4), not linoleic acid (ω-6, C18:2) or α-linolenic acid (ω-6, C18:3), induced degranulation. Taken together, these results suggest that ceramide is involved in mast cell degranulation via the calcium-mediated activation of PLA(2).  相似文献   
105.
Cyclic AMP (cAMP) response element-binding protein (CREB) is involved in memory, learning, and synaptic transmission. In this study, we observed changes of phosphorylated CREB (pCREB) immunoreactivity and its protein levels as well as brain-derived neurotrophic factor (BDNF) levels in the hippocampal dentate gyrus at postnatal (P) 1, 7, 14, and 21 in mice. In addition, we also investigated pCREB expression in doublecortin (DCX, a marker for neuronal progenitors) immunoreactive neuroblasts at P21. pCREB immunoreaction at P1 was detected in most of cells in the dentate gyrus, thereafter pCREB immunoreactivity was decreased in all the layers of the dentate gyrus with time, however, strong pCREB immunoreactivity was shown in cells confined to the subgranular zone of the dentate gyrus at P21. In this group, many pCREB immunoreactive cells were co-localized with DCX immunoreactive neuroblasts. In addition, pCREB protein levels were decreased with age, showing that their levels were very low at P21, while BDNF protein levels were increased with age. These results suggest that pCREB may play important roles in functional maturity of granule cells in mice.  相似文献   
106.
Biological Trace Element Research - We measured serum concentrations of trace elements and evaluated their clinical significance in relation to treatment outcomes of critically ill patients. A...  相似文献   
107.
Lee JD  Kwon TJ  Kim UK  Lee WS 《PloS one》2012,7(1):e30418

Background

Mutations in the neurofibromatosis type 2 (NF2) tumor-suppressor gene have been identified in not only NF2-related tumors but also sporadic vestibular schwannomas (VS). This study investigated the genetic and epigenetic alterations in tumors and blood from 30 Korean patients with sporadic VS and correlated these alterations with tumor behavior.

Methodology/Principal Findings

NF2 gene mutations were detected using PCR and direct DNA sequencing and three highly polymorphic microsatellite DNA markers were used to assess the loss of heterozygosity (LOH) from chromosome 22. Aberrant hypermethylation of the CpG island of the NF2 gene was also analyzed. The tumor size, the clinical growth index, and the proliferative activity assessed using the Ki-67 labeling index were evaluated. We found 18 mutations in 16 cases of 30 schwannomas (53%). The mutations included eight frameshift mutations, seven nonsense mutations, one in-frame deletion, one splicing donor site, and one missense mutation. Nine patients (30%) showed allelic loss. No patient had aberrant hypermethylation of the NF2 gene and correlation between NF2 genetic alterations and tumor behavior was not observed in this study.

Conclusions/Significance

The molecular genetic changes in sporadic VS identified here included mutations and allelic loss, but no aberrant hypermethylation of the NF2 gene was detected. In addition, no clear genotype/phenotype correlation was identified. Therefore, it is likely that other factors contribute to tumor formation and growth.  相似文献   
108.
We have investigated the use of BMSC (bone marrow stromal cell) as a feeder cell for improving culture efficiency of ESC (embryonic stem cell). B6CBAF1 blastocysts or ESC stored after their establishment were seeded on to a feeder layer of either SCA-1+/CD45-/CD11b- BMSC or MEF (mouse embryonic fibroblast). Feeder cell activity in promoting ESC establishment from the blastocysts and in supporting ESC maintenance did not differ significantly between BMSC and MEF feeders. However, the highest efficiency of colony formation after culturing of inner cell mass cells of blastocysts was observed with the BMSC line that secreted the largest amount of LIF (leukaemia inhibitory factor). Exogenous LIF was essential for the ESC establishment on BMSC feeder, but not for ESC maintenance. Neither change in stem cell-specific gene expression nor increase in stem cell aneuploidy was detected after the use of BMSC feeder. We conclude that BMSC can be utilized as the feeder of ESC, which improves culture efficiency.  相似文献   
109.
Cucumber cotyledons provide an excellent experimental system in which to investigate developmental changes in gene expression, from the early phase of heterotrophism through phototrophic growth to senescence. A cDNA library was prepared from the final stage of senescing cucumber cotyledons (<95% yellow) for studying the genes responsible for lipid mobilization during germination and senescence. This library had produced numerous senescence-associated clones in a previous study. Here, a total of 365 cDNA clones and their expression levels were examined via semi-quantitative RT-PCR. Up-regulation of expression was detected for several known and unknown genes. These results were used to investigate the possible functions for senescence-related genes during cotyledon development  相似文献   
110.
With the goal of developing Alzheimer's disease therapeutics, we have designed and synthesized new piperidine derivatives having dual action of acetylcholinesterase (AChE) and beta-amyloid peptide (Abeta) aggregation inhibition. For binding with the catalytic site of AChE, an ester with aromatic group was designed, and for the peripheral site, another aromatic group was considered. And for intercalating amyloid-beta oligomerization, long and linear conformation with a lipophilic group was considered. The synthetic methods employed for the structure with dual action depended on alcohols with an aromatic ring and the substituted benzoic acids, which are esterificated in the last step of the synthetic pathway. We screened these new derivatives through inhibition tests of acetylcholinesterase, butyrylcholinesterase (BChE), and Abeta(1-42) peptide aggregation, AChE-induced Abeta(1-42) aggregation. Our results displayed that compound 12 showed the best inhibitory potency and selectivity of AChE, and 29 showed the highest selectivity of BChE inhibition. Compounds 15 and 12 had inhibitory activities against Abeta(1-42) aggregation and AChE-induced Abeta aggregation. In the docking model, we confirmed that 4-chlorobenzene of 12 plays the parallel pi-pi stacking against the indole ring of Trp84 in the bottom gorge of AChE. Because the benzyhydryl moiety of 12 covered the peripheral site of AChE in a funnel-like shape, 12 showed good inhibitory potency against AChE and could inhibit AChE-induced Abeta(1-42) peptide aggregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号