首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2894篇
  免费   243篇
  国内免费   108篇
  2023年   19篇
  2022年   42篇
  2021年   109篇
  2020年   64篇
  2019年   95篇
  2018年   113篇
  2017年   75篇
  2016年   86篇
  2015年   127篇
  2014年   171篇
  2013年   215篇
  2012年   234篇
  2011年   178篇
  2010年   140篇
  2009年   100篇
  2008年   133篇
  2007年   104篇
  2006年   121篇
  2005年   103篇
  2004年   112篇
  2003年   114篇
  2002年   95篇
  2001年   89篇
  2000年   77篇
  1999年   73篇
  1998年   41篇
  1997年   29篇
  1996年   26篇
  1995年   22篇
  1994年   11篇
  1993年   12篇
  1992年   20篇
  1991年   21篇
  1990年   17篇
  1989年   21篇
  1988年   15篇
  1987年   18篇
  1986年   10篇
  1985年   17篇
  1984年   11篇
  1983年   13篇
  1982年   11篇
  1979年   13篇
  1978年   11篇
  1976年   10篇
  1975年   9篇
  1974年   9篇
  1973年   9篇
  1972年   9篇
  1971年   11篇
排序方式: 共有3245条查询结果,搜索用时 515 毫秒
151.
Growing evidence has shown that pulsed electromagnetic fields (PEMF) can modulate bone metabolism in vivo and regulate the activities of osteoblasts and osteoclasts in vitro. Osteocytes, accounting for 95% of bone cells, act as the major mechanosensors in bone for transducing external mechanical signals and producing cytokines to regulate osteoblastic and osteoclastic activities. Targeting osteocytic signaling pathways is becoming an emerging therapeutic strategy for bone diseases. We herein systematically investigated the changes of osteocyte behaviors, functions, and its regulation on osteoclastogenesis in response to PEMF. The osteocyte-like MLO-Y4 cells were exposed to 15 Hz PEMF stimulation with different intensities (0, 5, and 30 Gauss [G]) for 2 hr. We found that the cell apoptosis and cytoskeleton organization of osteocytes were regulated by PEMF with an intensity-dependent manner. Moreover, PEMF exposure with 5 G significantly inhibited apoptosis-related gene expression and also suppressed the gene and protein expression of the receptor activator of nuclear factor κB ligand/osteoprotegerin (RANKL/OPG) ratio in MLO-Y4 cells. The formation, maturation, and osteoclastic bone-resorption capability of in vitro osteoclasts were significantly suppressed after treated with the conditioned medium from PEMF-exposed (5 G) osteocytes. Our results also revealed that the inhibition of osteoclastic formation, maturation, and bone-resorption capability induced by the conditioned medium from 5 G PEMF-exposed osteocytes was significantly attenuated after abrogating primary cilia in osteocytes using the polaris siRNA transfection. Together, our findings highlight that PEMF with 5 G can inhibit cellular apoptosis, modulate cytoskeletal distribution, and decrease RANKL/OPG expression in osteocytes, and also inhibit osteocyte-mediated osteoclastogenesis, which requires the existence of primary cilia in osteocytes. This study enriches our basic knowledge for further understanding the biological behaviors of osteocytes and is also helpful for providing a more comprehensive mechanistic understanding of the effect of electromagnetic stimulation on bone and relevant skeletal diseases (e.g., bone fracture and osteoporosis).  相似文献   
152.
Capacitation is a mandatory process for the acquisition of mammalian sperm fertilization competence and involves the activation of a complex and still not fully understood system of signaling pathways. Under in vitro conditions, there is an increase in both protein tyrosine phosphorylation (pTyr) and intracellular Ca2+ levels in several species. In human sperm, results from our group revealed that pTyr signaling can be blocked by inhibiting proline-rich tyrosine kinase 2 (PYK2). Based on the role of PYK2 in other cell types, we investigated whether the PYK2-dependent pTyr cascade serves as a sensor for Ca 2+ signaling during human sperm capacitation. Flow cytometry studies showed that exposure of sperm to the PYK2 inhibitor N-[2-[[[2-[(2,3-dihydro-2-oxo-1 H-indol-5-yl)amino]-5-(trifluoromethyl)-4-pyrimidinyl]amino]methyl]phenyl]- N-methyl-methanesulfonamide hydrate (PF431396) produced a significant and concentration-dependent reduction in intracellular Ca 2+ levels during capacitation. Further studies revealed that PF431396-treated sperm exhibited a decrease in the activity of CatSper, a key sperm Ca 2+ channel. In addition, time course studies during capacitation in the presence of PF431396 showed a significant and sustained decrease in both intracellular Ca 2+ and pH levels after 2 hr of incubation, temporarily coincident with the activation of PYK2 during capacitation. Interestingly, decreases in Ca 2+ levels and progressive motility caused by PF431396 were reverted by inducing intracellular alkalinization with NH 4Cl, without affecting the pTyr blockage. Altogether, these observations support pTyr as an intracellular sensor for Ca 2+ entry in human sperm through regulation of cytoplasmic pH. These results contribute to a better understanding of the modulation of the polymodal CatSper and signaling pathways involved in human sperm capacitation.  相似文献   
153.
Disease outbreaks devastate Pyropia aquaculture farms every year. The three most common and serious diseases are Olpidiopsis‐blight and red‐rot disease caused by oomycete pathogens and green‐spot disease caused by the PyroV1 virus. We hypothesized that a basic genetic profile of molecular defenses will be revealed by comparing and analyzing the genetic response of Pyropia tenera against the above three pathogens. RNAs isolated from infected thalli were hybridized onto an oligochip containing 15,115 primers designed from P. tenera expressed sequence tags (EST)s. Microarray profiles of the three diseases were compared and interpreted together with histochemical observation. Massive amounts of reactive oxygen species accumulated in P. tenera cells exposed to oomycete pathogens. Heat shock genes and serine proteases were the most highly up‐regulated genes in all infection experiments. Genes involved in RNA metabolism, ribosomal proteins and antioxidant metabolism were also highly up‐regulated. Genetic profiles of P. tenera in response to pathogens were most similar between the two biotrophic pathogens, Olpidiopsis pyropiae and PyroV1 virus. A group of plant resistance genes were specifically regulated against each pathogen. Our results suggested that disease response in P. tenera consists of a general constitutive defense and a genetic toolkit against specific pathogens.  相似文献   
154.
A combined pore blockage and cake filtration model was applied to the virus filtration of an Fc-fusion protein using the three commercially available filters, F-1, F-2, and F-3 in a range of buffer conditions including sodium-phosphate and tris-acetate buffers with and without 200 mM NaCl at pH 7.5. The fouling behaviors of the three filters for the feed solutions spiked with minute virus of mice were described well by this combined model for all the solution conditions. This suggests that fouling of the virus filters is dominated by the pore blockage mechanism during the initial stage of the filtration and transformed to the cake filtration mechanism during the later stage of the filtration. Both flux and transmembrane resistance can be described well by this model. The pore blockage rate and the rate of increase of protein layer resistance over blocked pores are found to be affected by membrane properties as well as the solution conditions resulting from the modulation of interactions between virus, protein, and membrane by the solution conditions.  相似文献   
155.
The genetic analysis of Brachyplatystoma platynemum individuals sampled from the lower Madeira River reinforces the existence of two structured populations in the Amazon Basin (Madeira and Amazon populations). However, the recapture of an individual from the Amazon population in the Solimões River, which was telemetry-tagged in the Madeira River after the damming, indicates that fish from the Amazon population move between the two river systems. This has not yet been observed, however, in the Madeira River population, which is currently divided and isolated in the lower and upper Madeira River by the construction of two dams.  相似文献   
156.

Astrocytes are the major glial cells in brain tissue and are involved, among many functions, ionic and metabolic homeostasis maintenance of synapses. These cells express receptors and transporters for neurotransmitters, including GABA. GABA signaling is reportedly able to affect astroglial response to injury, as evaluated by specific astrocyte markers such as glial fibrillary acid protein and the calcium-binding protein, S100B. Herein, we investigated the modulatory effects of the GABAA receptor on astrocyte S100B secretion in acute hippocampal slices and astrocyte cultures, using the agonist, muscimol, and the antagonists pentylenetetrazol (PTZ) and bicuculline. These effects were analyzed in the presence of tetrodotoxin (TTX), fluorocitrate (FLC), cobalt and barium. PTZ positively modify S100B secretion in hippocampal slices and astrocyte cultures; in contrast, bicuculline inhibited S100B secretion only in hippocampal slices. Muscimol, per se, did not change S100B secretion, but prevented the effects of PTZ and bicuculline. Moreover, PTZ-induced S100B secretion was prevented by TTX, FLC, cobalt and barium indicating a complex GABAA communication between astrocytes and neurons. The effects of two putative agonists of GABAA, β-hydroxybutyrate and methylglyoxal, on S100B secretion were also evaluated. In view of the neurotrophic role of extracellular S100B under conditions of injury, our data reinforce the idea that GABAA receptors act directly on astrocytes, and indirectly on neurons, to modulate astroglial response.

  相似文献   
157.
158.
159.
Angiogenic factor AGGF1 (AngioGenic factor with G-patch and FHA (Forkhead-Associated) domain 1) blocks neointimal formation (formation of a new or thickened layer of arterial intima) after vascular injury by regulating phenotypic switching of vascular smooth muscle cells (VSMCs). However, the AGGF1 receptor on VSMCs and the underlying molecular mechanisms of its action are unknown. In this study, we used functional analysis of serial AGGF1 deletions to reveal the critical AGGF1 domain involved in VSMC phenotypic switching. This domain was required for VSMC phenotypic switching, proliferation, cell cycle regulation, and migration, as well as the regulation of cell cycle inhibitors cyclin D, p27, and p21. This domain also contains an RDDAPAS motif via which AGGF1 interacts with integrin α7 (ITGA7), but not α8. In addition, we show that AGGF1 enhanced the expression of contractile markers MYH11, α-SMA, and SM22 and inhibited MEK1/2, ERK1/2, and ELK phosphorylation in VSMCs, and that these effects were inhibited by knockdown of ITGA7, but not by knockdown of ITGA8. In vivo, deletion of the VSMC phenotypic switching domain in mice with vascular injury inhibited the functions of AGGF1 in upregulating α-SMA and SM22, inhibiting MEK1/2, ERK1/2, and ELK phosphorylation, in VSMC proliferation, and in blocking neointimal formation. Finally, we show the inhibitory effect of AGGF1 on neointimal formation was blocked by lentivirus-delivered shRNA targeting ITGA7. Our data demonstrate that AGGF1 interacts with its receptor integrin α7 on VSMCs, and this interaction is required for AGGF1 signaling in VSMCs and for attenuation of neointimal formation after vascular injury.  相似文献   
160.
We previously found that low affinity receptors for the Fc portion of IgG, FcgammaRIIB, which are widely expressed by hematopoietic cells, can negatively regulate receptor tyrosine kinase-dependent cell proliferation. We investigated here the mechanisms of this inhibition. We used as experimental models wild-type mast cells, which constitutively express the stem cell factor receptor Kit and FcgammaRIIB, FcgammaRIIB-deficient mast cells reconstituted with wild-type or mutated FcgammaRIIB, and Src homology 2 domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1)-deficient mast cells. We found that, upon coaggregation with Kit, FcgammaRIIB are tyrosyl-phosphorylated, recruit SHIP1, but not SHIP2, SH2 domain-containing protein tyrosine phosphatase-1 or -2, abrogate Akt phosphorylation, shorten the duration of the activation of mitogen-activated protein kinases of the Ras and Rac pathways, abrogate cyclin induction, prevent cells from entering the cell cycle, and block thymidine incorporation. FcgammaRIIB-mediated inhibition of Kit-dependent cell proliferation was reduced in SHIP1-deficient mast cells, whereas inhibition of IgE-induced responses was abrogated. Cell proliferation was, however, inhibited by coaggregating Kit with FcgammaRIIB whose intracytoplasmic domain was replaced with the catalytic domain of SHIP1. These results demonstrate that FcgammaRIIB use SHIP1 to inhibit pathways shared by receptor tyrosine kinases and immunoreceptors to trigger cell proliferation and cell activation, respectively, but that, in the absence of SHIP1, FcgammaRIIB can use other effectors that specifically inhibit cell proliferation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号