首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21792篇
  免费   1637篇
  国内免费   1319篇
  2024年   44篇
  2023年   275篇
  2022年   577篇
  2021年   1032篇
  2020年   628篇
  2019年   891篇
  2018年   907篇
  2017年   635篇
  2016年   915篇
  2015年   1230篇
  2014年   1513篇
  2013年   1652篇
  2012年   1905篇
  2011年   1692篇
  2010年   1107篇
  2009年   1040篇
  2008年   1186篇
  2007年   1082篇
  2006年   912篇
  2005年   782篇
  2004年   634篇
  2003年   629篇
  2002年   527篇
  2001年   431篇
  2000年   377篇
  1999年   361篇
  1998年   199篇
  1997年   185篇
  1996年   177篇
  1995年   136篇
  1994年   96篇
  1993年   83篇
  1992年   130篇
  1991年   102篇
  1990年   85篇
  1989年   73篇
  1988年   60篇
  1987年   62篇
  1986年   46篇
  1985年   68篇
  1984年   20篇
  1983年   29篇
  1982年   20篇
  1981年   16篇
  1980年   14篇
  1979年   20篇
  1978年   15篇
  1974年   13篇
  1971年   13篇
  1969年   17篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Growing evidence has shown that pulsed electromagnetic fields (PEMF) can modulate bone metabolism in vivo and regulate the activities of osteoblasts and osteoclasts in vitro. Osteocytes, accounting for 95% of bone cells, act as the major mechanosensors in bone for transducing external mechanical signals and producing cytokines to regulate osteoblastic and osteoclastic activities. Targeting osteocytic signaling pathways is becoming an emerging therapeutic strategy for bone diseases. We herein systematically investigated the changes of osteocyte behaviors, functions, and its regulation on osteoclastogenesis in response to PEMF. The osteocyte-like MLO-Y4 cells were exposed to 15 Hz PEMF stimulation with different intensities (0, 5, and 30 Gauss [G]) for 2 hr. We found that the cell apoptosis and cytoskeleton organization of osteocytes were regulated by PEMF with an intensity-dependent manner. Moreover, PEMF exposure with 5 G significantly inhibited apoptosis-related gene expression and also suppressed the gene and protein expression of the receptor activator of nuclear factor κB ligand/osteoprotegerin (RANKL/OPG) ratio in MLO-Y4 cells. The formation, maturation, and osteoclastic bone-resorption capability of in vitro osteoclasts were significantly suppressed after treated with the conditioned medium from PEMF-exposed (5 G) osteocytes. Our results also revealed that the inhibition of osteoclastic formation, maturation, and bone-resorption capability induced by the conditioned medium from 5 G PEMF-exposed osteocytes was significantly attenuated after abrogating primary cilia in osteocytes using the polaris siRNA transfection. Together, our findings highlight that PEMF with 5 G can inhibit cellular apoptosis, modulate cytoskeletal distribution, and decrease RANKL/OPG expression in osteocytes, and also inhibit osteocyte-mediated osteoclastogenesis, which requires the existence of primary cilia in osteocytes. This study enriches our basic knowledge for further understanding the biological behaviors of osteocytes and is also helpful for providing a more comprehensive mechanistic understanding of the effect of electromagnetic stimulation on bone and relevant skeletal diseases (e.g., bone fracture and osteoporosis).  相似文献   
992.
993.
994.
Recent research suggests that the first-line oral antidiabetes drug metformin may prevent gastric cancer progression and improve prognosis. Many studies have also shown that long noncoding RNAs (lncRNAs) play important roles in many biological processes. Therefore, we aimed to explore whether lncRNAs participate in the mechanisms by which metformin affects gastric cancer cells. In the current study, we found that metformin significantly inhibited the cellular functions of gastric cancer cells through Cell Counting Kit-8 and invasion assays. We found that lncRNA H19 was greatly downregulated in gastric cancer cells treated with metformin using lncRNA microassays. Based on bioinformatics analyses of the Oncomine and The Cancer Genome Atlas databases, H19 is shown to be overexpressed in gastric cancer tissues, with increased expression of H19 relating to advanced pathological tumor stage and pathological tumor node metastasis stage, indicating that H19 may be associated with the invasive ability of gastric cancer. We knocked down H19 in AGS and SGC7901 cell lines and found that knocked-down H19 could decrease gastric cancer cell invasion and that metformin could not further decrease invasion after the knock down. Moreover, H19 depletion increased AMPK activation and decreased MMP9 expression, and metformin could not further activate AMPK or decrease MMP9 in H19 knocked-down gastric cancer cells. In summary, metformin has a profound antitumor effect on gastric cancer cells, and H19 is a key component in the process of metformin suppressing gastric cancer cell invasion.  相似文献   
995.
996.
Osteoporosis, arthritis, Peget's disease, bone tumor, periprosthetic joint infection, and periprosthetic loosening have a common characteristic of osteolysis, which is characterized by the enhanced osteoclastic bone resorptive function. At present, the treatment target of these diseases is to interfere with osteoclastic formation and function. Scutellarein (Scu), a flavonoids compound, can inhibit the progress of tumor and inflammation. However, the role of Scu in inflammatory osteolysis isn’t elucidated clearly. Our study showed that Scu inhibited bone destruction induced by LPS in vivo and OC morphology and function induced by RANKL in vitro. Mechanistic studies revealed that Scu suppressed osteoclastic marker gene expression by RANKL-induced, such as Ctsk9, Mmp9, Acp5, and Atp6v0d2. In addition, we found that the inhibition effects of osteoclastogenesis and bone resorption function of Scu were mediated via attenuating NF-κB and NFAT signaling pathways. In conclusion, the results showed that Scu may become a potential new drug for the treatment of inflammatory osteolysis.  相似文献   
997.
MiR-137 has been identified as potential hepatocellular carcinoma (HCC) prognostic biomarkers. Highly relevant HCC prognostic biomarkers may be derived from combinations of miR-137 with its target genes involved in the regulation of liver microenvironment. This study aimed at the discovery of such a combination with improved HCC prognosis performance than miR-137 or its target gene alone in a significantly higher number of HCC patients than previous studies. Analysis of the differentially expressed micro RNAs (miRNAs) between cancer and noncancer tissues reconfirmed miR-137 to be among the most relevant prognostic miRNAs and the data of 375 HCC patients and 50 normal cases were from the Cancer Genome Atlas (TCGA) data sets. Target genes were identified by the established search methods and Kaplan–Meier survival analysis of HCC patients was used to evaluate the overall survival (OS) and recurrence-free survival (RFS). Cox proportional hazards regression indicated that the miR-137 and its target gene AFM combination is an independent prognostic factor for the OS and RFS in HCC. In vitro experiments validated that miR-137 could bind to 3′-untranslated region of the AFM and promote the invasion and metastasis of HCC cell lines. The expressions of miR-137 and its liver microenvironment regulatory target gene AFM in combination significantly correlated with HCC progression in a higher number of patients than in previous studies, which suggested their potential as prognostic biomarkers for HCC.  相似文献   
998.
MicroRNAs (miRNAs) have been established to regulate skeletal muscle development in mammals. However, few studies have been conducted on the regulation of proliferation and differentiation of bovine myoblast cells by miRNAs. The aim of our study was to explore the function of miR-483 in cell proliferation and differentiation of bovine myoblast. Here, we found that miR-483 declined in both proliferation and differentiation stages of bovine myoblast cells. During the proliferation phase, the overexpression of miR-483 downregulated the cell cycle–associated genes cyclin-dependent kinase 2 (CDK2), proliferating cell nuclear antigen (PCNA) messenger RNA (mRNA), and the protein levels. At the cellular level, cell cycle, cell counting kit-8, and 5-ethynyl-2´-deoxyuridine results indicated that the overexpression of miR-483 block cell proliferation. During differentiation, the overexpression of miR-483 led to a decrease in the levels of the myogenic marker genes MyoD1 and MyoG mRNA and protein. Furthermore, the immunofluorescence analysis results showed that the number of MyHC-positive myotubes was reduced. In contrast, the opposite experimental results were obtained concerning both proliferation and differentiation after the inhibition of miR-483. Mechanistically, we demonstrated that miR-483 target insulin-like growth factor 1 (IGF1) and downregulated the expression of key proteins in the PI3K/AKT signaling pathway. Altogether, our findings indicate that miR-483 acts as a negative regulator of bovine myoblast cell proliferation and differentiation.  相似文献   
999.
Ovarian cancer characterizes as the fourth leading consequence of death associated with cancer for women. Accumulating evidence underscores the vital roles of microRNAs (miRNAs) in preventing ovarian cancer development. Besides, induction of the phosphatidylinositol-3 kinase/serine/threonine kinase (PI3K/Akt) pathway associated with the ovarian cancer cell migration and invasion. The study aims to examine the effects of miR-15b on the proliferation, apoptosis, and senescence of human ovarian cancer cells by binding to lysophosphatidic acid receptor 3 (LPAR3) with the involvement of the PI3K/Akt pathway. The positive expression of LPAR3 protein was detected by immunohistochemistry. Then the interaction between miR-15b and LPAR3 was examined. The possible role of miR-15b in ovarian cancer was explored using gain- and loss-of-function experiments. Subsequently, the functions of miR-15b on PI3K/Akt pathway, proliferation, migration, invasion, senescence and apoptosis of ovarian cancer cells were assessed. Furthermore, in vivo tumorigenicity assay in nude mice was performed. LPAR3 was overexpressed, whereas miR-15b was poorly expressed in ovarian cancer tissues. LPAR3 is a direct target of miR-15b. Restored miR-15b promoted Bax expression, apoptosis, and senescence, inhibited expression of LPAR3 and Bcl-2, the extent of PI3K and Akt phosphorylation, as well as ovarian cancer cell proliferation, migration, and invasion. Further, tumor growth was observed to be prevented by miR-15b overexpression. Collectively, our study demonstrates that miR-15b represses the proliferation and drives the senescence and apoptosis of ovarian cancer cells through the suppression of LPAR3 and the PI3K/Akt pathway, highlighting an antitumorigenic role of miR-15b.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号