全文获取类型
收费全文 | 2660篇 |
免费 | 228篇 |
国内免费 | 1篇 |
专业分类
2889篇 |
出版年
2023年 | 30篇 |
2022年 | 33篇 |
2021年 | 84篇 |
2020年 | 46篇 |
2019年 | 54篇 |
2018年 | 62篇 |
2017年 | 45篇 |
2016年 | 70篇 |
2015年 | 129篇 |
2014年 | 136篇 |
2013年 | 145篇 |
2012年 | 207篇 |
2011年 | 198篇 |
2010年 | 108篇 |
2009年 | 90篇 |
2008年 | 120篇 |
2007年 | 129篇 |
2006年 | 116篇 |
2005年 | 109篇 |
2004年 | 91篇 |
2003年 | 86篇 |
2002年 | 89篇 |
2001年 | 31篇 |
2000年 | 33篇 |
1999年 | 38篇 |
1998年 | 29篇 |
1997年 | 20篇 |
1996年 | 34篇 |
1995年 | 22篇 |
1994年 | 13篇 |
1993年 | 15篇 |
1992年 | 21篇 |
1991年 | 21篇 |
1990年 | 26篇 |
1989年 | 35篇 |
1988年 | 26篇 |
1987年 | 21篇 |
1986年 | 15篇 |
1985年 | 17篇 |
1984年 | 23篇 |
1983年 | 17篇 |
1981年 | 11篇 |
1979年 | 18篇 |
1978年 | 13篇 |
1977年 | 13篇 |
1975年 | 12篇 |
1973年 | 17篇 |
1972年 | 12篇 |
1970年 | 16篇 |
1969年 | 14篇 |
排序方式: 共有2889条查询结果,搜索用时 15 毫秒
171.
172.
Jacob M. Vigil Joe Alcock Patrick Coulombe Laurie McPherson Mark Parshall Allison Murata Heather Brislen 《PloS one》2015,10(5)
BackgroundThe goal of these analyses was to determine whether there were systematic differences in Emergency Severity Index (ESI) scores, which are intended to determine priority of treatment and anticipate resource needs, across categories of race and ethnicity, after accounting for patient-presenting vital signs and examiner characteristics, and whether these differences varied among male and female Veterans Affairs (VA) ED patients.ConclusionsThe findings suggest the possibility that subgroups of VA patients receive different ESI ratings in triage, which may have cascading, downstream consequences for patient treatment quality, satisfaction with care, and trust in the health equity of emergency care. 相似文献
173.
A quantitative model for the all-or-none permeabilization of phospholipid vesicles by the antimicrobial peptide cecropin A
下载免费PDF全文
![点击此处可从《Biophysical journal》网站下载免费的PDF全文](/ch/ext_images/free.gif)
The mechanism of the all-or-none release of the contents of phospholipid vesicles induced by the antimicrobial peptide cecropin A was investigated. A detailed experimental study of the kinetics of dye release showed that the rate of release increases with the ratio of peptide bound per vesicle and, at constant concentration, with the fraction of the anionic lipid phosphatidylglycerol in neutral, phosphatidylcholine membranes. Direct measurement of the kinetics of peptide binding and dissociation from vesicles revealed that the on-rate is almost independent of vesicle composition, whereas the off-rate decreases by orders of magnitude with increasing content of anionic lipid. A simple, exact model fits all experimental kinetic data quantitatively. This is the first time that an exact kinetic model is implemented for a peptide with an all-or-none mechanism. In this model, cecropin A binds reversibly to vesicles, which at a certain point enter an unstable state. In this state, a pore probably opens and all vesicle contents are released, consistent with the all-or-none mechanism. This pore state is a state of the whole vesicle, but does not necessarily involve all peptides on that vesicle. No peptide oligomerization on the vesicle is involved; alternative models that assume oligomerization are inconsistent with the experimental data. Thus, formation of well-defined, peptide-lined pores is unlikely. 相似文献
174.
Zhixiang Tong Aniruddh Solanki Allison Hamilos Oren Levy Kendall Wen Xiaolei Yin Jeffrey M Karp 《The EMBO journal》2015,34(8):987-1008
Derived from any somatic cell type and possessing unlimited self-renewal and differentiation potential, induced pluripotent stem cells (iPSCs) are poised to revolutionize stem cell biology and regenerative medicine research, bringing unprecedented opportunities for treating debilitating human diseases. To overcome the limitations associated with safety, efficiency, and scalability of traditional iPSC derivation, expansion, and differentiation protocols, biomaterials have recently been considered. Beyond addressing these limitations, the integration of biomaterials with existing iPSC culture platforms could offer additional opportunities to better probe the biology and control the behavior of iPSCs or their progeny in vitro and in vivo. Herein, we discuss the impact of biomaterials on the iPSC field, from derivation to tissue regeneration and modeling. Although still exploratory, we envision the emerging combination of biomaterials and iPSCs will be critical in the successful application of iPSCs and their progeny for research and clinical translation. 相似文献
175.
Karen L. Soldano Melanie E. Garrett Heidi L. Cope J. Michael Rusnak Nathen J. Ellis Kaitlyn L. Dunlap Allison E. Ashley‐Koch 《Birth defects research. Part B, Developmental and reproductive toxicology》2013,98(5):365-373
Neural tube defects (NTDs) are caused by improper neural tube closure during the early stages of embryonic development. NTDs are hypothesized to have a complex genetic origin and numerous candidate genes have been proposed. The nitric oxide synthase 3 (NOS3) G594T polymorphism has been implicated in risk for spina bifida, and interactions between that single nucleotide polymorphism (SNP) and the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism have also been observed. To evaluate other genetic variation in the NO pathway in the development of NTDs, we examined all three NOS genes: NOS1, NOS2, and NOS3. Using 3109 Caucasian samples in 745 families, we evaluated association in the overall dataset and within specific phenotypic subsets. Haplotype tagging SNPs in the NOS genes were tested for genetic association with NTD subtypes, both for main effects as well as for the presence of interactions with the MTHFR C677T polymorphism. Nominal main effect associations were found with all subtypes, across all three NOS genes, and interactions were observed between SNPs in all three NOS genes and MTHFR C677T. Unlike the previous report, the most significant associations in our dataset were with cranial subtypes and the AG genotype of rs4795067 in NOS2 (p = 0.0014) and the interaction between the rs9658490 G allele in NOS1 and MTHFR 677TT genotype (p = 0.0014). Our data extend the previous findings by implicating a role for all three NOS genes, independently and through interactions with MTHFR, in risk not only for spina bifida, but all NTD subtypes. 相似文献
176.
Ramon HE Beal AM Liu Y Worthen GS Oliver PM 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(8):4023-4031
Ndfip1 is an adaptor for the E3 ubiquitin ligase Itch. Both Ndfip1- and Itch-deficient T cells are biased toward Th2 cytokine production. In this study, we demonstrate that lungs from Ndfip1(-/-) mice showed increased numbers of neutrophils and Th17 cells. This was not because Ndfip1(-/-) T cells are biased toward Th17 differentiation. In fact, fewer Ndfip1(-/-) T cells differentiated into Th17 cells in vitro due to high IL-4 production. Rather, Th17 differentiation was increased in Ndfip1(-/-) mice due to increased numbers of IL-6-producing eosinophils. IL-6 levels in mice that lacked both Ndfip1 and IL-4 were similar to wild-type controls, and these mice had fewer Th17 cells in their lungs. These results indicate that Th2 inflammation, such as that observed in Ndfip1(-/-) mice, can increase Th17 differentiation by recruiting IL-6-producing eosinophils into secondary lymphoid organs and tissues. This may explain why Th17 cells develop within an ongoing Th2 inflammatory response. 相似文献
177.
D. C. Allison M. Chakerian P. F. Ridolpho S. Anderson S. Curley M. E. Wilder J. Robertson 《Cell proliferation》1987,20(3):273-290
Abstract. Flow cytometry of cellular DNA content provides rapid estimates of DNA distributions, i.e. the proportions of cells in the different phases of the cell cycle. Measurements of DNA alone, however, yield no kinetic information and can make it difficult to resolve the cell cycle distributions of normal and transformed cells present in tumour biopsy specimens. The use of absorption cytophotometry of the Feulgen DNA content and [3H]TdR labelling of the same nuclei provides objective criteria to distinguish the ranges of DNA content for G0/G1, S, and G2/M cells. We now report on a study in which we combined flow and absorption cytometry to resolve the cell cycle distributions of host and tumour cells present in biopsy specimens of MCa-11 mouse mammary tumours labelled in vivo for 0.5 hr with [3H]TdR. A similar analysis of exponential monolayer cultures, labelled for 5 min with [3H]TdR under pulse-chase conditions, revealed a highly synchronous traversal of almost all cells through the different phases of the cell cycle. Combination of the flow and absorption methods also allowed us to detect G2 tumour cells in vivo and a minor tumour stem-line in vitro, to show that these two techniques are complementary and yield new information when they are combined. 相似文献
178.
Noel S Herman A Johnson GA Gray CA Stewart MD Bazer FW Gertler A Spencer TE 《Biology of reproduction》2003,68(3):772-780
A hormonal servomechanism has been proposed to regulate differentiation and function of the endometrial glandular epithelium (GE) in the ovine uterus during pregnancy. This mechanism involves sequential actions of estrogen, progesterone, ovine interferon tau (IFNtau), placental lactogen (oPL), and placental growth hormone (oGH). The biological actions of oPL in vitro are mediated by homodimerization of the prolactin receptor (oPRLR) and heterodimerization of the oPRLR and oGH receptor. The objectives of the study were to determine the effects of intrauterine oPL, oGH, and their combination on endometrial histoarchitecture and gene expression and to localize and characterize binding sites for oPL in the ovine uterus in vivo using an in situ ligand binding assay. Intrauterine infusion of oPL and/or oGH following IFNtau into ovariectomized ewes treated with progesterone daily differentially affected endometrial gland number and expression of uterine milk proteins and osteopontin. However, neither hormone affected PRLR, insulin-like growth factor (IGF)-I, or IGF-II mRNA levels in the endometrium. A chimeric protein of placental secretory alkaline phosphatase (SEAP) and oPL was used to identify and characterize binding sites for oPL in frozen sections of interplacentomal endometrium from pregnant ewes. Specific binding of SEAP-oPL was detected in the endometrial GE on Days 30, 60, 90, and 120 of pregnancy. In Day 90 endometrium, SEAP-oPL binding to the endometrial GE was displaced completely by oPL and prolactin (oPRL) but only partially by oGH. Binding experiments using the extracellular domain of the oPRLR also showed that iodinated oPL binding sites could be competed for by oPRL and oPL but not by oGH. Collectively, results indicate that oPL binds to receptors in the endometrial glands and that oPRL is more effective than oGH in competing for these binding sites. Thus, effects of oPL on the endometrial glands may be mediated by receptors for oPRL and oGH. 相似文献
179.
Peachey NS Ray TA Florijn R Rowe LB Sjoerdsma T Contreras-Alcantara S Baba K Tosini G Pozdeyev N Iuvone PM Bojang P Pearring JN Simonsz HJ van Genderen M Birch DG Traboulsi EI Dorfman A Lopez I Ren H Goldberg AF Nishina PM Lachapelle P McCall MA Koenekoop RK Bergen AA Kamermans M Gregg RG 《American journal of human genetics》2012,90(2):331-339
Complete congenital stationary night blindness (cCSNB) is a clinically and genetically heterogeneous group of retinal disorders characterized by nonprogressive impairment of night vision, absence of the electroretinogram (ERG) b-wave, and variable degrees of involvement of other visual functions. We report here that mutations in GPR179, encoding an orphan G protein receptor, underlie a form of autosomal-recessive cCSNB. The Gpr179(nob5/nob5) mouse model was initially discovered by the absence of the ERG b-wave, a component that reflects depolarizing bipolar cell (DBC) function. We performed genetic mapping, followed by next-generation sequencing of the critical region and detected a large transposon-like DNA insertion in Gpr179. The involvement of GPR179 in DBC function was confirmed in zebrafish and humans. Functional knockdown of gpr179 in zebrafish led to a marked reduction in the amplitude of the ERG b-wave. Candidate gene analysis of GPR179 in DNA extracted from patients with cCSNB identified GPR179-inactivating mutations in two patients. We developed an antibody against mouse GPR179, which robustly labeled DBC dendritic terminals in wild-type mice. This labeling colocalized with the expression of GRM6 and was absent in Gpr179(nob5/nob5) mutant mice. Our results demonstrate that GPR179 plays a critical role in DBC signal transduction and expands our understanding of the mechanisms that mediate normal rod vision. 相似文献
180.
Recent work suggests that the 9-repeat (9R) allele located in the 3'UTR VNTR of the SLC6A3 gene increases risk of posttraumatic stress disorder (PTSD). However, no study reporting this association to date has been based on population-based samples. Furthermore, no study of which we are aware has assessed the joint action of genetic and DNA methylation variation at SLC6A3 on risk of PTSD. In this study, we assessed whether molecular variation at SLC6A3 locus influences risk of PTSD. Participants (n?=?320; 62 cases/258 controls) were drawn from an urban, community-based sample of predominantly African American Detroit adult residents, and included those who had completed a baseline telephone survey, had provided blood specimens, and had a homozygous genotype for either the 9R or 10R allele or a heterozygous 9R/10R genotype. The influence of DNA methylation variation in the SLC6A3 promoter locus was also assessed in a subset of participants with available methylation data (n?=?83; 16 cases/67 controls). In the full analytic sample, 9R allele carriers had almost double the risk of lifetime PTSD compared to 10R/10R genotype carriers (OR?=?1.98, 95% CI?=?1.02-3.86), controlling for age, sex, race, socioeconomic status, number of traumas, smoking, and lifetime depression. In the subsample of participants with available methylation data, a significant (p?=?0.008) interaction was observed whereby 9R allele carriers showed an increased risk of lifetime PTSD only in conjunction with high methylation in the SLC6A3 promoter locus, controlling for the same covariates. Our results confirm previous reports supporting a role for the 9R allele in increasing susceptibility to PTSD. They further extend these findings by providing preliminary evidence that a "double hit" model, including both a putatively reduced-function allele and high methylation in the promoter region, may more accurately capture molecular risk of PTSD at the SLC6A3 locus. 相似文献