首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   515篇
  免费   42篇
  2021年   9篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   7篇
  2015年   11篇
  2014年   20篇
  2013年   15篇
  2012年   19篇
  2011年   28篇
  2010年   17篇
  2009年   7篇
  2008年   25篇
  2007年   30篇
  2006年   28篇
  2005年   16篇
  2004年   21篇
  2003年   16篇
  2002年   18篇
  2001年   20篇
  2000年   22篇
  1999年   17篇
  1998年   19篇
  1997年   9篇
  1996年   4篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1992年   15篇
  1991年   15篇
  1990年   7篇
  1989年   13篇
  1988年   5篇
  1987年   9篇
  1986年   3篇
  1985年   12篇
  1984年   3篇
  1983年   4篇
  1982年   6篇
  1981年   4篇
  1980年   2篇
  1979年   11篇
  1978年   10篇
  1977年   5篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
  1971年   2篇
排序方式: 共有557条查询结果,搜索用时 234 毫秒
51.
The import of disaccharides by many bacteria is achieved through their simultaneous translocation and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). The imported phospho-disaccharides are, in some cases, subsequently hydrolyzed by members of the unusual glycoside hydrolase family GH4. The GH4 enzymes, occasionally found also in bacteria such as Thermotoga maritima that do not utilise a PEP-PTS system, require both NAD(+) and Mn(2+) for catalysis. A further curiosity of this family is that closely related enzymes may show specificity for either alpha-d- or beta-d-glycosides. Here, we present, for the first time, the three-dimensional structure (using single-wavelength anomalous dispersion methods, harnessing extensive non-crystallographic symmetry) of the 6-phospho-beta-glycosidase, BglT, from T.maritima in native and complexed (NAD(+) and Glc6P) forms. Comparison of the active-center structure with that of the 6-phospho-alpha-glucosidase GlvA from Bacillus subtilis reveals a striking degree of structural similarity that, in light of previous kinetic isotope effect data, allows the postulation of a common reaction mechanism for both alpha and beta-glycosidases. Given that the "chemistry" occurs primarily on the glycone sugar and features no nucleophilic attack on the intact disaccharide substrate, modulation of anomeric specificity for alpha and beta-linkages is accommodated through comparatively minor structural changes.  相似文献   
52.

Background and methods

Human metapneumovirus (hMPV) is a recently discovered respiratory virus associated with bronchiolitis, pneumonia, croup and exacerbations of asthma. Since respiratory viruses are frequently detected in patients with acute exacerbations of COPD (AE-COPD) it was our aim to investigate the frequency of hMPV detection in a prospective cohort of hospitalized patients with AE-COPD compared to patients with stable COPD and to smokers without by means of quantitative real-time RT-PCR.

Results

We analysed nasal lavage and induced sputum of 130 patients with AE-COPD, 65 patients with stable COPD and 34 smokers without COPD. HMPV was detected in 3/130 (2.3%) AE-COPD patients with a mean of 6.5 × 105 viral copies/ml in nasal lavage and 1.88 × 105 viral copies/ml in induced sputum. It was not found in patients with stable COPD or smokers without COPD.

Conclusion

HMPV is only found in a very small number of patients with AE-COPD. However it should be considered as a further possible viral trigger of AE-COPD because asymptomatic carriage is unlikely.  相似文献   
53.
New proteomics methods are required for targeting and identification of subsets of a proteome in an activity-based fashion. Here, we report the first gel-free, mass spectrometry-based strategy for mechanism-based profiling of retaining beta-endoglycosidases in complex proteomes. Using a biotinylated, cleavable 2-deoxy-2-fluoroxylobioside inactivator, we have isolated and identified the active-site peptides of target retaining beta-1,4-glycanases in systems of increasing complexity: pure enzymes, artificial proteomes, and the secreted proteome of the aerobic mesophilic soil bacterium Cellulomonas fimi. The active-site peptide of a new C. fimi beta-1,4-glycanase was identified in this manner, and the peptide sequence, which includes the catalytic nucleophile, is highly conserved among glycosidase family 10 members. The glycanase gene (GenBank accession number DQ146941) was cloned using inverse PCR techniques, and the protein was found to comprise a catalytic domain that shares approximately 70% sequence identity with those of xylanases from Streptomyces sp. and a family 2b carbohydrate-binding module. The new glycanase hydrolyzes natural and artificial xylo-configured substrates more efficiently than their cello-configured counterparts. It has a pH dependence very similar to that of known C. fimi retaining glycanases.  相似文献   
54.
Tay-Sachs and Sandhoff diseases are lysosomal storage disorders that result from an inherited deficiency of beta-hexosaminidase A (alphabeta). Whereas the acute forms are associated with a total absence of hexosaminidase A and early death, the chronic adult forms exist with activity and protein levels of approximately 5%, and unaffected individuals have been found with only 10% of normal levels. Surprisingly, almost all disease-associated missense mutations do not affect the active site of the enzyme but, rather, inhibit its ability to obtain and/or retain its native fold in the endoplasmic reticulum, resulting in its retention and accelerated degradation. By growing adult Tay-Sachs fibroblasts in culture medium containing known inhibitors of hexosaminidase we have raised the residual protein and activity levels of intralysosomal hexosaminidase A well above the critical 10% of normal levels. A similar effect was observed in fibroblasts from an adult Sandhoff patient. We propose that these hexosaminidase inhibitors function as pharmacological chaperones, enhancing the stability of the native conformation of the enzyme, increasing the amount of hexosaminidase A capable of exiting the endoplasmic reticulum for transport to the lysosome. Therefore, pharmacological chaperones could provide a novel approach to the treatment of adult Tay-Sachs and possibly Sandhoff diseases.  相似文献   
55.
Despite their unparalleled catalytic prowess and environmental compatibility, enzymes have yet to see widespread application in synthetic chemistry. This lack of application and the resulting underuse of their enormous potential stems not only from a wariness about aqueous biological catalysis on the part of the typical synthetic chemist but also from limitations on enzyme applicability that arise from the high degree of substrate specificity possessed by most enzymes. This latter perceived limitation is being successfully challenged through rational protein engineering and directed evolution efforts to alter substrate specificity. However, such programs require considerable effort to establish. Here we report an alternative strategy for expanding the substrate specificity, and therefore the synthetic utility, of a given enzyme through a process of "substrate engineering". The attachment of a readily removable functional group to an alternative glycosyltransferase substrate induces a productive binding mode, facilitating rational control of substrate specificity and regioselectivity using wild-type enzymes.  相似文献   
56.
The gram-positive soil bacterium Cellulomonas fimi is shown to produce at least two intracellular beta-N-acetylglucosaminidases, a family 20 beta-N-acetylhexosaminidase (Hex20), and a novel family 3-beta-N-acetylglucosaminidase/beta-glucosidase (Nag3), through screening of a genomic expression library, cloning of genes and analysis of their sequences. Nag3 exhibits broad substrate specificity for substituents at the C2 position of the glycone: kcat/Km values at 25 degrees C were 0.066 s(-1) x mM(-1) and 0.076 s(-1) x mM(-1) for 4'-nitrophenyl beta-N-acetyl-D-glucosaminide and 4'-nitrophenyl beta-D-glucoside, respectively. The first glycosidase with this broad specificity to be described, Nag3, suggests an interesting evolutionary link between beta-N-acetylglucosaminidases and beta-glucosidases of family 3. Reaction by a double-displacement mechanism was confirmed for Nag3 through the identification of a glycosyl-enzyme species trapped with the slow substrate 2',4'-dinitrophenyl 2-deoxy-2-fluoro-beta-D-glucopyranoside. Hex20 requires the acetamido group at C2 of the substrate, being unable to cleave beta-glucosides, since its mechanism involves an oxazolinium ion intermediate. However, it is broad in its specificity for the D-glucosyl/D-galactosyl configuration of the glycone: Km and kcat values were 53 microM and 482.3 s(-1) for 4'-nitrophenyl beta-N-acetyl-D-glucosaminide and 66 microM and 129.1 s(-1) for 4'-nitrophenyl beta-N-acetyl-D-galactosaminide.  相似文献   
57.
The nitrogen status of endosymbiotic dinoflagellates (zooxanthellae) in the temperate coral Plesiastrea versipora (Lamarck) was determined by measuring the extent to which ammonium (40 μM NH4+) enhanced the rate of zooxanthellar dark carbon fixation above that seen in filtered seawater (FSW) alone; the enhancement ratio was expressed as [dark NH4+ rate/dark FSW rate]. VD′/VL, a further index of nitrogen status, was also calculated where VD′ = [dark NH4+ rate − dark FSW rate] and VL = rate of carbon fixation in the light. When corals were starved for 2-8 weeks, zooxanthellar nitrogen deficiency became apparent at ≥ 4 weeks, with NH4+/FSW and VD′/VL averaging up to 2.08 and 0.0061, respectively. A decrease in light-saturated photosynthesis per zooxanthella also occurred, with the photosynthetic rate after 4-6 weeks being just 81% of that seen prior to starvation. In comparison, when corals were fed 5 times per week for 8 weeks the addition of ammonium had little effect, indicating nitrogen sufficiency; NH4+/FSW and VD′/VL were 1.03 and 0.0003, respectively. Photosynthetic rates of zooxanthellae from well-fed corals were up to 1.7 times greater than those of zooxanthellae from starved corals. The nitrogen status of zooxanthellae from corals in the field exhibited seasonal differences. Autumn samples were nitrogen sufficient, with NH4+/FSW = 1.003 and VD′/VL = 0.0001. In contrast, a small degree of nitrogen deficiency was seen in winter and spring, when NH4+/FSW averaged 1.075 and 1.249, and VD′/VL averaged 0.0013 and 0.0014, respectively. The greatest degree of nitrogen deficiency was observed in summer, when NH4+/FSW averaged 1.318 and VD′/VL averaged 0.0036. Given the clear links between food supply and nitrogen status seen under experimental conditions, and the likelihood that the zooxanthellae are also able to take up nutrients directly from the seawater, the fluctuations in nitrogen status may reflect temporal fluctuations in seawater nutrient concentrations and plankton abundance. The nutrient status of these temperate zooxanthellae in the field is in contrast to the marked nitrogen deficiency seen in zooxanthellae from nutrient-poor coral reef waters, and raises the possibility that temperate zooxanthellae can store nitrogen for use when exogenous nutrients and food are less readily available. This, in turn, may contribute to the considerable stability of temperate zooxanthellar populations under highly variable environmental conditions.  相似文献   
58.
Transfer RNA genes tend to be presented in multiple copies in the genomes of most organisms, from bacteria to eukaryotes. The evolution and genomic structure of tRNA genes has been a somewhat neglected area of molecular evolution. Escherichia coli, the first phylogenetic species for which more than two different strains have been sequenced, provides an invaluable framework to study the evolution of tRNA genes. In this work, a detailed analysis of the tRNA structure of the genomes of Escherichia coli strains K12, CFT073, and O157:H7, Shigella flexneri 2a 301, and Salmonella typhimurium LT2 was carried out. A phylogenetic analysis of these organisms was completed, and an archaeological map depicting the main events in the evolution of tRNA genes was drawn. It is shown that duplications, deletions, and horizontal gene transfers are the main factors driving tRNA evolution in these genomes. On average, 0.64 tRNA insertions/duplications occur every million years (Myr) per genome per lineage, while deletions occur at the slower rate of 0.30 per million years per genome per lineage. This work provides a first genomic glance at the problem of tRNA evolution as a repetitive process, and the relationship of this mechanism to genome evolution and codon usage is discussed.  相似文献   
59.
Yip VL  Withers SG 《Biochemistry》2006,45(2):571-580
"Classical" glycosidases utilize either direct or double-displacement mechanisms involving oxocarbenium ion-like transition states to catalyze the hydrolysis of glycosidic bonds. By contrast, the mechanism of the glycosidases in glycoside hydrolase family 4 has been recently proposed to involve NAD+-mediated redox steps along with alpha,beta-elimination and addition steps via anionic intermediates. Support for this mechanism in BglT, a 6-phospho-beta-glucosidase in family 4, has been provided through mechanistic and X-ray crystallographic analyses [Yip, V. L.Y., et al. (2004) J. Am. Chem. Soc. 126, 8354-8355] in which primary deuterium kinetic isotope effects for the hydride abstraction at C3 and for the alpha-proton abstraction at C2 indicate that these two steps are both partially rate-limiting. Current data reveal that there is no secondary deuterium kinetic isotope effect associated with the rehybridization of the C1 sp3 center to a sp2 center. Furthermore, a flat linear free energy relationship was established with a series of aryl 6-phospho-beta-D-glucosides of varying leaving group abilities. Taken together, these data indicate that cleavage of the C1-O1 linkage does not occur during a rate-limiting step. Since the deprotonation at C2 is slow and partially rate-limiting while the departure of the leaving group is not, a stepwise E1(cb)-type mechanism rather than an E1 or a concerted E2-syn mechanism is proposed. Direct evidence for the role of NAD+ was obtained by reduction in situ using NaBH4 leading to an inactive enzyme that could be reactivated by the addition of excess NAD+. This was accompanied by the expected UV-vis spectrophotometric changes.  相似文献   
60.
We analyzed body temperature (T(b)), basal metabolic rate (BMR), wet thermal conductance (C(wet)), and evaporative water loss (EWL) of marsupials by conventional and phylogenetically corrected regression. Allometric effects were substantial for BMR, C(wet), and EWL but not T(b). There was a strong phylogenetic signal for mass and all physiological traits. A significant phylogenetic signal remained for BMR, C(wet), and EWL even after accounting for the highly significant phylogenetic signal of mass. T(b), BMR, C(wet), and EWL allometric residuals were correlated with some diet, distribution, and climatic variables before and after correction for phylogeny. T(b) residuals were higher for marsupials from arid environments (high T(a) and more variable rainfall). The fossorial marsupial mole had a lower-than-expected T(b) residual. The allometric slope for BMR was 0.72-0.75. Residuals were consistently related to distribution aridity and rainfall variability, with species from arid and variable rainfall habitats having a low BMR, presumably to conserve energy in a low-productivity environment. The nectarivorous honey possum had a higher-than-expected BMR. For C(wet), the allometric slope was 0.55-0.62; residuals were related to diet, with folivores having low and insectivores high C(wet) residuals. The allometric slope for EWL was 0.68-0.73. EWL residuals were consistently correlated with rainfall variability, presumably facilitating maintenance of water balance during dry periods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号