首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   502篇
  免费   34篇
  2014年   8篇
  2013年   8篇
  2012年   6篇
  2011年   13篇
  2010年   18篇
  2009年   10篇
  2008年   15篇
  2007年   16篇
  2006年   13篇
  2005年   13篇
  2004年   7篇
  2003年   4篇
  2001年   5篇
  1998年   4篇
  1997年   8篇
  1996年   8篇
  1994年   7篇
  1990年   4篇
  1989年   9篇
  1988年   4篇
  1985年   8篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1980年   5篇
  1978年   3篇
  1977年   5篇
  1975年   4篇
  1974年   4篇
  1973年   5篇
  1972年   8篇
  1971年   4篇
  1970年   3篇
  1968年   5篇
  1959年   10篇
  1958年   25篇
  1957年   19篇
  1956年   29篇
  1955年   27篇
  1954年   19篇
  1953年   14篇
  1952年   23篇
  1951年   10篇
  1950年   15篇
  1949年   15篇
  1948年   16篇
  1947年   4篇
  1946年   8篇
  1945年   4篇
排序方式: 共有536条查询结果,搜索用时 15 毫秒
11.
13C-nuciear magnetic resonance (NMR) spectroscopy was used to investigate the products of glycerol and acetate metabolism released by Leishmania braziliensis panamensis promastigotes and also to examine the interaction of each of these substrates with glucose or alanine. The NMR data were supplemented by measurements of the rates of oxygen consumption and substrate utilization, and of 14CO2 production from 14C-labeIed substrate. Cells incubated with [2-13C]glycerol released acetate, succinate and D-lactate in addition to CO2. Cells incubated with acetate released only CO2. More succinate C-2/C-3 than C-l/C-4 was released from both [2-13C]glycerol and [2-13C]glucose, indicating that succinate was formed predominantly by CO2 fixation followed by reverse flux through part of the Krebs cycle. Some redistribution of the position of labeling was also seen in alanine and pyruvate, suggesting cycling through pyruvate/oxaloacetate/phosphoenolpyruvate. Cells incubated with combinations of 2 substrates consumed oxygen at the same rate as cells incubated with 1 or no substrate, even though the total substrate utilization had increased. When promastigotes were incubated with both glycerol and glucose, the rate of glucose consumption was unchanged but glycerol consumption decreased about 50%, and the rate of 14CO2 production from [l,(3)-14C]glycerol decreased about 60%. Alanine did not affect the rates of consumption of glucose or glycerol, but decreased 14CO2 production from these substrates by increasing flow of label into alanine. Although glucose decreased alanine consumption by 70%, it increased the rate of 14CO2 production from [U-14C]- and [l-14C]alanine by about 20%. This is consistent with rapid equilibration of alanine with pyruvate derived from glucose and yet little decrease in the specific activity of the large alanine pool.  相似文献   
12.
13.
A polymerase chain reaction (PCR) protocol, previously designed for amplification of a DNA fragment from aster yellows mycoplasmalike organism (MLO), was employed to investigate the detection of MLO DNA in field-collected and in vitro micropropagated plants. PCR with template DNA extracted from symptomatic, naturally-infected samples of Brassica, Chrysanthemum and Hydrangea, each yielded a DNA band corresponding to 1.0 Kbp. However, no DNA product was observed when either infected Ranunculus (with phyllody disease) or Gladiolus with (symptoms of ‘germs fins’) was used as source of template nucleic acid for PCR; further experiments indicated absence of target DNA in the case of Ranunculus and the presence of substances in Gladiolus which inhibited the PCR. The MLO-specific DNA was detected by PCR using less than 95 pg of total nucleic acid (equivalent to total nucleic acid from 1.9, ug tissue) in the case of field-collected Hydrangea and less than 11.4 pg of nucleic acid (equivalent to total nucleic acid from 19 ng of tissue) in the case of field-collected Brassica. The findings illustrate highly sensitive detection of MLOs in both field-grown and in vitro micropropagated infected plants.  相似文献   
14.
15.
16.
17.
18.
The mechanism of water-stress-induced embolism of xylem was investigated in Malosma laurina and Heteromeles arbutifolia, two chaparral shrub species of southern California. We tested the hypothesis that the primary cause of xylem dysfunction in these species during dehydration was the pulling of air through the pores in the cell walls of vessels (pores in pit membranes) as a result of high tensions on xylem water. First, we constructed vulnerability-to-embolism curves for (i) excised branches that were increasingly dehydrated in the laboratory and (ii) hydrated branches exposed to increasing levels of external air pressure. Branches of M. laurina that were dehydrated became 50% embolized at a xylem pressure potential of -1.6 MPa, which is equal in magnitude but opposite in sign to the +1.6 MPa of external air pressure that caused 50% embolism in hydrated stems. Dehydrated and pressurized branches of H. arbutifolia reached a 50% level of embolism at -6.0 and +6.4 MPa, respectively. Secondly, polystyrene spheres ranging in diameter from 20 to 149 nm were perfused through hydrated stem segments to estimate the pore size in the vessel cell walls (pit membranes) of the two species. A 50% or greater reduction in hydraulic conductivity occurred in M. laurina at perfusions of 30, 42, 64 and 82 nm spheres and in H. arbutifolia at perfusions of 20 and 30 nm spheres. Application of the capillary equation to these pore diameters predicted 50% embolism at xylem tensions of -2.2 MPa for M. laurina and -6.7 MPa for H. arbutifolia, which are within 0.7 MPa of the actual values. Our results suggest that the size of pores in pit membranes may be a factor in determining both xylem efficiency and vulnerability to embolism in some chaparral species. H. arbutifolia, with smaller pores and narrower vessels, withstands lower water potentials but has lower transport efficiency. M. laurina, with wider pores and wider vessels, has a greater transport efficiency but requires a deeper root system to help avoid catastro-phically low water potentials.  相似文献   
19.
Abstract. The holarctic ant tribe Formicini is revised, the new genus Bajcaridris described, and possible phylogenetic relationships are discussed. The subgenus Iberoformica is synonymized with Formica. A synopsis, diagnosis and keys to the genera are provided.  相似文献   
20.
A water flux model, which assumes that the dynamic functioning of the soil-plant-atmosphere continuum may be described by a series of steady states, was examined as a means for interpreting leaf water potential measurements in ‘Valencia’ orange trees (Citrus sinensis (L.) Osbeck). According to the model, leaf water potential should be related to transpirational flux, which in this experiment was estimated by the ratio of vapor pressure deficit of the atmosphere to leaf diffusion resistance (VPD/rleaf). Leaf water potentials decreased in a specific relationship with increasing values of VPD/rleaf provided that soil water was adequate and soil temperature was not too low, but regardless of season of the year or climatic or edaphic differences among 3 field locations. When soil water tensions exceeded 0.3 bar or when soil temperatures were lower than 15°C, deviations from the model occurred in the form of more negative leaf water potentials than predicted by VPD/rleaf. The model predicts from simple measurements made on intact plants that these differences were due to the modification of flow resistances by cool temperatures and the modification of both resistances and the potential of water at the source in the case of soil water depletion. The model may be a useful tool for interpreting plant water potential data under contrasting environmental conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号