首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29142篇
  免费   3690篇
  国内免费   3篇
  32835篇
  2021年   286篇
  2018年   287篇
  2017年   258篇
  2016年   479篇
  2015年   757篇
  2014年   835篇
  2013年   1070篇
  2012年   1296篇
  2011年   1199篇
  2010年   772篇
  2009年   739篇
  2008年   1102篇
  2007年   1087篇
  2006年   1006篇
  2005年   970篇
  2004年   947篇
  2003年   949篇
  2002年   919篇
  2001年   918篇
  2000年   913篇
  1999年   775篇
  1998年   416篇
  1997年   380篇
  1996年   368篇
  1995年   319篇
  1994年   320篇
  1993年   335篇
  1992年   682篇
  1991年   630篇
  1990年   611篇
  1989年   660篇
  1988年   564篇
  1987年   603篇
  1986年   475篇
  1985年   565篇
  1984年   478篇
  1983年   385篇
  1982年   398篇
  1981年   358篇
  1980年   328篇
  1979年   435篇
  1978年   382篇
  1977年   337篇
  1976年   313篇
  1975年   335篇
  1974年   382篇
  1973年   361篇
  1972年   305篇
  1971年   285篇
  1969年   247篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Smith FW  Jackson WA 《Plant physiology》1987,84(4):1319-1324
The effect of nitrogen status on phosphorous uptake and translocation was examined in 6-day-old dark-grown decapitated maize seedlings exposed to 25 micromolar phosphorous. Transfer to complete solutions containing 1 millimolar ammonium resulted in an increase in phosphorous uptake rate after 6 to 8 hours. The stimulus remained effective for at least 5.5 hours upon subsequent transfer to nitrogen-free solutions. Pretreatments for 16 hours with either nitrate or ammonium resulted in enhanced rates of subsequent phosphorous uptake and in enhanced translocation to the xylem of the exogenously supplied phosphorous. Both processes reached a plateau following pretreatment with 0.1 to 1.0 millimolar concentrations of either nitrogen ion. Further enhancement occurred with 10 millimolar nitrate, but not with 10 millimolar ammonium pretreatment. Although nitrogen pretreatments slightly increased the quantity of exogenous phosphorous retained in the root tissue, most of the extra phosphorous taken up by the nitrogen-pretreated seedlings was translocated to the xylem. The enhanced translocation, however, did not totally account for the increase in uptake implying a specific stimulation of the uptake process.  相似文献   
112.
The small intestine is the major site of glutamine utilization in the mammalian body. During prolonged (40-day) streptozotocin-diabetes in the rat there is a marked increase in both the size and the phosphate-activated glutaminase activity of the small intestine. Despite this increased capacity, intestinal glutamine utilization ceases in diabetic rats. Mean arterial glutamine concentration fell by more than 50% in diabetic rats, suggesting that substrate availability is responsible for the decrease in intestinal glutamine use. When arterial glutamine concentrations in diabetic rats were elevated by infusion of glutamine solutions, glutamine uptake across the portal-drained viscera was observed. The effect of other respiratory fuels on intestinal glutamine metabolism was examined. Infusions of ketone bodies did not affect glutamine use by the portal-drained viscera of non-diabetic rats. Prolonged diabetes had no effect on the activity of 3-oxoacid CoA-transferase in the small intestine or on the rate of ketone-body utilization in isolated enterocytes. Glutamine (2 mM) utilization was decreased in enterocytes isolated from diabetic rats as compared with those from control animals. However, glutaminase activity in homogenates of enterocytes was unchanged by diabetes. In enterocytes isolated from diabetic rats the addition of ketone bodies or octanoate decreased glutamine use. It is proposed that during prolonged diabetes ketone bodies, and possibly fatty acids, replace glutamine as the major respiratory fuel of the small intestine.  相似文献   
113.
The effects of purified soluble fibrin and of fibrinogen fragments (fibrin mimic) on the activation of Lys-plasminogen (i.e. plasminogen residues 77-790) to plasmin by streptokinase.plasminogen activator complex and by tissue-type plasminogen activator were studied. Dissociation constants of both activators were estimated to lie in the range 90-160 nM (fibrin) and 16-60 nM (CNBr-cleavage fragments of fibrinogen). The kinetic mechanism for both types of activator comprised non-essential enzyme activation via a Rapid Equilibrium Ordered Bireactant sequence. In order to relate the fibrin affinity of plasminogen activators to their fibrinolytic potency, the rate of lysis of supported human plasma clots formed in the presence of unmodified or active-centre-acylated precursors of plasminogen activators was studied as a function of the concentration of enzyme derivative. The concentrations of unmodified enzyme giving 50% lysis/h in this assay were 0.9, 2.0 and 11.0 nM for tissue-type plasminogen activator, streptokinase.plasmin(ogen) and urokinase respectively. However, the potencies of active-centre-acylated derivatives of these enzymes suggested that acylated-tissue plasminogen activator and streptokinase.plasminogen complexes of comparable hydrolytic stability were of comparable potency. Both types of acyl-enzyme were significantly more potent than acyl-urokinases.  相似文献   
114.
Induction of maturation in small Xenopus laevis oocytes   总被引:1,自引:0,他引:1  
The competence of Xenopus laevis oocytes in various stages of growth to respond to progesterone treatment was investigated. Full-grown (stage 6) oocytes undergo nuclear membrane dissolution and resume meiosis in response to progesterone exposure, while smaller oocytes (stages 3-5; less than 1100 micron in diameter) do not. The defect which prevents 750- to 1050-micron oocytes from responding to progesterone can be overcome by microinjecting cytoplasm withdrawn from a stage 6 oocyte. Germinal vesicle breakdown in these small oocytes occurs on a timetable similar to that of stage 6 oocytes exposed to progesterone and is accompanied by a twofold increase in protein synthesis as well as the activation of MPF. The results argue that a cytoplasmic factor(s) which probably first appears at late stage 5 is required for progesterone responsiveness. The identity and role of the factor(s) in the development of maturation competence and the regulation of maternal mRNA translation are discussed.  相似文献   
115.
116.
The interaction between rat mammary gland thioesterase II and fatty acid synthetase has been studied by a variety of physicochemical techniques. Pyrene-labeled thioesterase II does not exhibit increased fluorescence anisotropy when mixed with fatty acid synthetase, suggesting that the enzymes do not readily form a complex. Nevertheless, the functional interaction between the enzymes can be easily demonstrated by observing the hydrolysis, by unmodified thioesterase II, of acyl chains from their thioester linkage to the 4-phosphopantetheine of the fatty acid synthetase. This hydrolytic reaction is not inhibited even in the presence of a large excess of fatty acid synthetase with vacant 4'-phosphopantetheine thiols, indicating that interaction occurs only between thioesterase and fatty acid synthetase species which carry acyl chains on the 4'-phosphopantetheine thiols. A novel model system was devised which allowed us to explore the nature of the physical interaction between the two enzymes under conditions where the synthetase was actively engaged in acyl chain assembly. Fatty acid synthetase was treated with phenylmethanesulfonyl fluoride to inhibit its resident thioesterase activity, immobilized via a specific antibody to a column of Sepharose 4B, and exposed to the substrates required for acyl-enzyme assembly. When thioesterase II was introduced to the column, it passed through unretarded even though it efficiently catalyzed hydrolysis of the immobilized S-acyl synthetase en route. These results indicate that the two enzymes associate when an acyl chain is present on the synthetase and that they dissociate rapidly following completion of the catalytic process. Thus, the mammary system differs from that of the avian uropygial gland in which the two enzymes associate to form a stable complex even in the absence of substrates.  相似文献   
117.
Amiloride is a potent inhibitor of the Na+/H+ antiport. Inhibition is generally competitive with extracellular Na+ and therefore believed to result from binding to the outward-facing transport site. It is not known whether amiloride can interact with the internal aspect of the antiport. This question was addressed by trapping the drug inside resealed dog red cell ghosts. The antiport, which is quiescent in resting ghosts, was activated by acid-loading the cytoplasm. This was accomplished by exchanging extracellular Cl- for internal HCO-3 through capnophorin, the endogenous anion exchanger. The activity of the Na+/H+ antiport was detected as an increase in cell volume, resulting from the net osmotic gain associated with coupled Na+/H+ and Cl-/HCO-3 exchange, or as the uptake of 22Na+. Intracellular amiloride, at concentrations in excess of 100 microM, failed to inhibit Na+/H+ exchange. This is approximately 10 times higher than the concentration required for half-maximal inhibition when amiloride is added externally. Independent experiments demonstrated that failure of internal amiloride to inhibit exchange was not due to leakage of the inhibitor, to differences in pH, or to binding or inactivation of amiloride by the soluble contents. It was concluded that the antiport is functionally asymmetric with respect to amiloride. This implies that the transport site undergoes a conformational change upon translocation across the membrane or, alternatively, that a second site required for amiloride binding is only accessible from the outside.  相似文献   
118.
119.
Acyl-peptide hydrolase from rat liver. Characterization of enzyme reaction   总被引:5,自引:0,他引:5  
Acyl-peptide hydrolase, which catalyzes the hydrolysis of an N-terminally acetylated peptide to release an N-acetylamino acid, was isolated from rat liver and found to be N-terminally blocked. The kinetics of the hydrolysis of acetyl (Ac)-Ala-Ala, Ac-Ala-Ala-Ala, acetylalanine p-nitroanilide, and acetylalanine beta-naphthylamide were investigated. The Km values were between 1 and 9 mM, and the Vmax values were between 100 and 500 nmol/min/micrograms of enzyme. The enzyme activity toward acetylalanine p-nitroanilide and acetylalanine beta-naphthylamide was activated by the presence of Cl- and SCN- at concentrations between 0.1 and 0.5 M. By contrast, the activity toward Ac-Ala-Ala and Ac-Ala-Ala-Ala was inhibited by these anions. Among a series of divalent cations, Zn2+ was demonstrated to be the most potent inhibitor. The enzyme was inactivated by the addition of diisopropyl fluorophosphate, diethyl pyrocarbonate. Woodward's Reagent K, and glycine methyl ester/carbodiimide. Titration by diisopropyl fluorophosphate showed 0.7 mol of active serine/mol of enzyme subunit, which was confirmed by the incorporation of [3H]diisopropyl fluorophosphate into the enzyme. Acetylalanine chloromethyl ketone inactivated the enzyme following pseudo-first order kinetics; and Ac-Ala, a competitive inhibitor, protected the enzyme from this inactivation. Acyl-peptide hydrolase appears to be a serine protease utilizing a charge relay system involving serine, histidine, and, probably, a carboxyl group(s). Two series of acetyl dipeptides, acetylamino acid p-nitroanilides and acetylamino acid beta-naphthylamides, were prepared in order to determine enzyme specificity. The enzyme preferentially removed Ac-Ala, Ac-Met, and Ac-Ser, the most common acetylated N-terminal residues (Persson, B., Flinta, C., von Heijne, G., and J?rnvall, H. (1985) Eur. J. Biochem. 152, 523-527). The enzyme was shown to be useful for deblocking peptides (e.g. alpha-melanocyte-stimulating hormone and acetyl-renin substrate), and the crude enzyme/substrate mixtures were amenable to direct protein sequence analysis.  相似文献   
120.
Glutamine synthetase isozymes in elasmobranch brain and liver tissues   总被引:1,自引:0,他引:1  
Glutamine synthetase is present as isozymic forms in the elasmobranchs Squalus acanthias (dogfish shark) and Dasyatis sabina (stingray). Subcellular fractionation of elasmobranch brain and liver tissue shows the enzyme to be predominantly cytosolic in the former tissue and mitochondrial in the latter. For the cytosolic brain enzyme, the subunit Mr equals 42,000 in the stingray and 45,000 in the shark, as determined by sodium dodecyl sulfate-gel electrophoresis/Western blotting. The subunit Mr = 45,000 and 47,000, respectively, for stingray and dogfish mitochondrial liver enzymes. Translation of total brain RNA from both species gives immunoprecipitable nascent peptides of the same size as their respective mature enzymes. However, in liver tissue, translation of glutamine synthetase mRNA yields peptides of higher Mr than that of the mature enzymes. In dogfish liver, Mr = 50,000 for the translation product and, in stingray liver, Mr = 48,000. This suggests that the translocation of the enzyme into liver mitochondria may be via a signal or leader sequence mechanism. The larger liver isozyme of elasmobranch glutamine synthetase is found in kidney where it is also known to be mitochondrial. The smaller cytosolic isozyme occurs in retina, heart, gill, and rectal gland tissue as well as in brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号