首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   54篇
  374篇
  2021年   10篇
  2020年   4篇
  2019年   10篇
  2018年   6篇
  2017年   8篇
  2016年   7篇
  2015年   15篇
  2014年   10篇
  2013年   16篇
  2012年   11篇
  2011年   6篇
  2010年   5篇
  2009年   7篇
  2008年   9篇
  2007年   10篇
  2006年   13篇
  2005年   16篇
  2004年   11篇
  2003年   7篇
  2002年   9篇
  2001年   5篇
  2000年   5篇
  1999年   7篇
  1998年   6篇
  1996年   3篇
  1994年   3篇
  1993年   5篇
  1992年   12篇
  1991年   6篇
  1990年   7篇
  1989年   14篇
  1988年   4篇
  1987年   9篇
  1986年   6篇
  1985年   5篇
  1984年   10篇
  1983年   5篇
  1982年   5篇
  1981年   7篇
  1980年   6篇
  1977年   5篇
  1975年   4篇
  1973年   3篇
  1970年   4篇
  1960年   4篇
  1955年   2篇
  1935年   2篇
  1934年   2篇
  1933年   2篇
  1932年   2篇
排序方式: 共有374条查询结果,搜索用时 0 毫秒
41.
U Just  C Stocking  E Spooncer  T M Dexter  W Ostertag 《Cell》1991,64(6):1163-1173
Multipotent murine stem cell lines (FDC-Pmix) depend on IL-3 for self-renewal and proliferation and can be induced to differentiate into multiple hematopoietic lineages. Single FDC-Pmix cells infected with retroviral vectors expressing GM-CSF are induced to differentiate into granulocytes and macrophages. This results in a complete loss of clonogenic cells if IL-3 is not exogenously supplied; however, multipotent variants can be selected that do not terminally differentiate if cells are kept in the presence of IL-3. Unidirectional and synchronous granulocyte and macrophage differentiation accompanied with loss of self-renewal capacity is induced when IL-3 is removed. Our data indicate that activation of the GM-CSF receptor induces differentiation of stem cells by an instructive mechanism that can be blocked by the activated IL-3 receptor. A model of how receptors can induce proliferation and cell-specific differentiation by two separate pathways is discussed.  相似文献   
42.
Despite advances in restoration of degraded lands around the world, native plants are still underutilized. Selection of appropriate plant materials is a critical factor in determining plant establishment and persistence. To better inform decision‐making, we examined cold‐hardiness dynamics, flowering phenology, and survival among five geographically distinct sulfur‐flower buckwheat (Polygonaceae: Eriogonum umbellatum Torr.) populations in a common garden. LT50 (a measure of freezing injury) was determined every 6 weeks across a complete year; one population was also evaluated at the source. Cold‐hardiness dynamics were similar across populations, with annual fluctuations in mean LT50 exceeding 40°C. Rate of deacclimation (i.e. loss of cold tolerance) in spring varied across populations and was not related to the elevation from which a population came. Plants were less cold hardy in October 2014 compared to October 2013, likely reflecting a response to colder local conditions in 2013. Although the range of LT50 was similar for a single comparison of common garden versus wild‐grown plants, wild‐grown plants acclimated and deacclimated earlier than common garden‐grown plants. Plants derived from a low‐elevation population showed delayed flowering phenology, while high‐elevation populations showed earlier flowering phenology, with one high‐elevation population having the lowest survival rate in the common garden. These results suggest that while considerable plasticity in seasonal cold‐hardiness dynamics occur, population variability in deacclimation and flowering phenology have implications for selection and movement of sulfur‐flower buckwheat for ecological restoration.  相似文献   
43.
44.
Fifteen restriction sites were mapped to the 28S ribosomal RNA gene of individuals representing 54 species of frogs, two species of salamanders, a caecilian, and a lungfish. Eight of these sites were present in all species examined, and two were found in all but one species. Alignment of these conserved restriction sites revealed, among anuran 28S rRNA genes, five regions of major length variation that correspond to four of 12 previously identified divergent domains of this gene. One of the divergent domains (DD8) consists of two regions of length variation separated by a short segment that is conserved at least throughout tetrapods. Most of the insertions, deletions, and restriction-site variations identified in the 28S gene will require sequence-level analysis for a detailed reconstruction of their history. However, an insertion in DD9 that is coextensive with frogs in the suborder Neobatrachia, a BstEII site that is limited to representatives of two leptodactylid subfamilies, and a deletion in DD10 that is found only in three ranoid genera are probably synapomorphies.   相似文献   
45.
Although the cause of dopaminergic cell death in Parkinson's disease (PD) remains unknown, oxidative stress has been strongly implicated. Because of their ability to combat oxidative stress, diet derived phenolic compounds continue to be considered as potential agents for long-term use in PD. This study was aimed at investigating whether the natural phenolic compounds curcumin, naringenin, quercetin, fisetin can be neuroprotective in the 6-OHDA model of PD. Unilateral infusion of 6-OHDA into the medial forebrain bundle produced a significant loss of tyrosine hydroxylase (TH)-positive cells in the substantia nigra (SN) as well as a decreased of dopamine (DA) content in the striata in the vehicle-treated animals. Rats pretreated with curcumin or naringenin showed a clear protection of the number of TH-positive cells in the SN and DA levels in the striata. However, neither pretreatment with quercetin nor fisetin had any effects on TH-positive cells or DA levels. The ability of curcumin and naringenin to exhibit neuroprotection in the 6-OHDA model of PD may be related to their antioxidant capabilities and their capability to penetrate into the brain.  相似文献   
46.
The skeletal-type ryanodine receptor (RyR1) undergoes covalent adduction by nitric oxide (NO), redox-induced shifts in cation regulation, and non-covalent interactions driven by the transmembrane redox potential that enable redox sensing. Tight redox regulation of RyR1 is thought to be primarily mediated through highly reactive (hyperreactive) cysteines. Of the 100 cysteines per subunit of RyR1, approximately 25-50 are reduced, with 6-8 considered hyperreactive. Thus far, only Cys-3635, which undergoes selective adduction by NO, has been identified. In this report, RyR1-enriched junctional sarcoplasmic reticulum is labeled with 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM, 1 pmol/microg of protein) in the presence of 10 mm Mg(2+), conditions previously shown to selectively label hyperreactive sulfhydryls and eliminate redox sensing. The CPM-adducted RyR1 is separated by gel electrophoresis and subjected to in-gel tryptic digestion. Isolation of CPM-adducted peptides is achieved by analytical and microbore high-performance liquid chromatography utilizing fluorescence and UV detection. Subsequent analysis using two direct and one tandem mass spectrometry methods results in peptide masses and sequence data that, compared with the known primary sequence of RyR1, enable unequivocal identification of CPM-adducted cysteines. This work is the first to directly identify seven hyperreactive cysteines: 1040, 1303, 2436, 2565, 2606, 2611, and 3635 of RyR1. In addition to Cys-3635, the nitrosylation site, six additional cysteines may contribute toward redox regulation of the RyR1 complex.  相似文献   
47.
Patterns of sequence conservation in presynaptic neural genes   总被引:1,自引:1,他引:0  

Background  

The neuronal synapse is a fundamental functional unit in the central nervous system of animals. Because synaptic function is evolutionarily conserved, we reasoned that functional sequences of genes and related genomic elements known to play important roles in neurotransmitter release would also be conserved.  相似文献   
48.
Scanning electron microphotographs of 16 Salton Sea invertebrate species are presented within this portfolio. A wide spectrum of invertebrates was investigated including foraminiferans, a flatworm, a rotifer, annelids, crustaceans and insects. Additional information is provided on the morphology and function of structures visible in the images.  相似文献   
49.
Proteinaceous deposits composed of fibrillar amyloid-β (Aβ) are the primary neuropathological hallmarks in Alzheimer disease (AD) brains. The nucleation-dependent aggregation of Aβ is a stochastic process with frequently observed heterogeneity in aggregate size, structure, and conformation that manifests in fibril polymorphism. Emerging evidence indicates that polymorphic variations in Aβ fibrils contribute to phenotypic diversity and the rate of disease progression in AD. We recently demonstrated that a dodecamer strain derived from synthetic Aβ42 propagates to morphologically distinct fibrils and selectively induces cerebral amyloid angiopathy phenotype in transgenic mice. This report supports the growing contention that stable oligomer strains can influence phenotypic outcomes by faithful propagation of their structures. Although we determined the mechanism of dodecamer propagation on a mesoscopic scale, the molecular details of the microscopic reactions remained unknown. Here, we have dissected and evaluated individually the kinetics of macroscopic phases in aggregation to gain insight into the process of strain propagation. The bulk rates determined experimentally in each phase were used to build an ensemble kinetic simulation model, which confirmed our observation that dodecamer seeds initially grow by monomer addition toward the formation of a key intermediate. This is followed by conversion of the intermediate to fibrils by oligomer elongation and association mechanisms. Overall, this report reveals important insights into the molecular details of oligomer strain propagation involved in AD pathology.  相似文献   
50.
Understanding how evolutionary constraints shape the elevational distributions of tree lineages provides valuable insight into the future of tropical montane forests under global change. With narrow elevational ranges, high taxonomic turnover, frequent habitat specialization, and exceptional levels of endemism, tropical montane forests and trees are predicted to be highly sensitive to environmental change. Using plot census data from a gradient traversing > 3,000 m in elevation on the Amazonian flank of the Peruvian Andes, we employ phylogenetic approaches to assess the influence of evolutionary heritage on distribution trends of trees at the genus‐level. We find that closely related lineages tend to occur at similar mean elevations, with sister genera pairs occurring a mean 254 m in elevation closer to each other than the mean elevational difference between non‐sister genera pairs. We also demonstrate phylogenetic clustering both above and below 1,750 m a.s.l, corresponding roughly to the cloud‐base ecotone. Belying these general trends, some lineages occur across many different elevations. However, these highly plastic lineages are not phylogenetically clustered. Overall, our findings suggest that tropical montane forests are home to unique tree lineage diversity, constrained by their evolutionary heritage and vulnerable to substantial losses under environmental changes, such as rising temperatures or an upward shift of the cloud‐base.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号