首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   43篇
  183篇
  2021年   4篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2010年   2篇
  2009年   6篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   6篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   9篇
  1988年   9篇
  1987年   8篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   7篇
  1977年   5篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1969年   1篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
  1965年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
71.
Cyt2Aa1 is a haemolytic membrane pore forming toxin produced by Bacillus thuringiensis subsp. kyushuensis. To investigate membrane pore formation by this toxin, second-site revertants of an inactive mutant toxin Cyt2Aa1-I150A were generated by random mutagenesis using error-prone PCR. The decrease in side chain length caused by the replacement of isoleucine by alanine at position 150 in the alphaD-beta4 loop results in the loss of important van der Waals contacts that exist in the native protein between I150 and K199 and L203 on alphaE. 28 independent revertants of I150A were obtained and their relative toxicity can be explained by the position of the residue in the structure and the effect of the mutation on side-chain interactions. Analysis of these revertants revealed that residues on alphaA, alphaB, alphaC, alphaD and the loops between alphaA and alphaB, alphaD and beta5, beta6 and beta7 are important in pore formation. These residues are on the surface of the molecule suggesting that they may participate in membrane binding and toxin oligomerization. Changing the properties of the amino acid side-chains of these residues could affect the conformational changes required to transform the water-soluble toxin into the membrane insertion competent state.  相似文献   
72.
73.
In order to determine the mechanism of action of the 27 kDa mosquitocidal delta-endotoxin of Bacillus thuringiensis var. israelensis we have studied its effects on the conductance of planar lipid bilayers. The toxin formed cation-selective channels in the bilayers, permeable to K+ and Na+ but not to N-methylglucamine or Cl-, showing very fast, cooperative opening and closing. Channel opening was greatly reduced in the presence of divalent cations (Ca2+, Mg2+) and the effect was reversed when these ions were removed. These results are consistent with our proposal that B. thuringiensis toxins act by a mechanism of colloid-osmotic lysis.  相似文献   
74.
Using a gene probe derived from the cloned var. sotto insecticidal crystal protein (ICP) gene, we have cloned a Bacillus thuringiensis var. aizawai HD-133 ICP gene in Escherichia coli. The gene encodes a polypeptide that is toxic to Lepidoptera in vivo and in vitro. The protein is expressed at a level sufficient to produce phase-bright inclusions in recombinant E. coli strains, and these inclusions can be partially purified using discontinuous sucrose density gradients. Immunoblotting shows that the inclusions contain a 135 kDa polypeptide which reacts strongly with antiserum raised against the B. thuringiensis var. kurstaki HD-1 P1 polypeptide.  相似文献   
75.
Site-directed mutagenesis has been used to change individual amino acids of the larvicidal 27,000 Mr delta-endotoxin of Bacillus thuringiensis var. israelensis. Basic and acidic residues have been systematically replaced by alanine, and the resulting mutant polypeptides analysed for cytolytic and larvicidal activity, and binding to phosphatidyl choline liposomes. Replacement of residues at positions 154, 163, 164, 213 and 225 results in proteins which accumulate as inclusions in recombinant Bacillus subtilis cells similar to the wild-type, but have considerably reduced in-vitro and in-vivo toxicity. One mutant (Glu45 to Ala45) results in a protein that has reduced activity in vitro, but retains wild-type larvicidal toxicity. In addition, seven other mutations of charged residues result in proteins which form small or no inclusions in recombinant cells, despite being produced at levels similar to the wild-type in six out of seven cases. In most instances, the toxicity of these aberrantly expressed proteins is considerably less than the wild-type, although one (Lys124 to Ala124) results in a polypeptide with approximately threefold increased activity in vitro. A secondary structural model is proposed to explain these observations.  相似文献   
76.
The native crystal delta-endotoxin produced by Bacillus thuringiensis var. colmeri, serotype 21, is toxic to both lepidopteran (Pieris brassicae) and dipteran (Aedes aegypti) larvae. Solubilization of the crystal delta-endotoxin in alkaline reducing conditions and activation with trypsin and gut extracts from susceptible insects yielded a preparation whose toxicity could be assayed in vitro against a range of insect cell lines. After activation with Aedes aegypti gut extract the preparation was toxic to all of the mosquito cell lines but only one lepidopteran line (Spodoptera frugiperda), whereas an activated preparation produced by treatment with P. brassicae gut enzymes or trypsin was toxic only to lepidopteran cell lines. These in vitro results were paralleled by the results of in vivo bioassays. Gel electrophoretic analysis of the products of these different activation regimes suggested that a 130-kDa protoxin in the native crystal is converted to a 55-kDa lepidopteran-specific toxin by trypsin or P. brassicae enzymes and to a 52-kDa dipteran toxin by A. aegypti enzymes. Two-step activation of the 130-kDa protoxin by successive treatment with trypsin and A. aegypti enzymes further suggested that the 52-kDa dipteran toxin is derived from the 55-kDa lepidopteran toxin by enzymes specific to the mosquito gut. Confirmation of this suggestion was obtained by peptide mapping of these two polypeptides. The native crystal 130 kDa delta-endotoxin and the two insect-specific toxins all cross-reacted with antiserum to B. thuringiensis var. kurstaki P1 lepidopteran toxin. Preincubation of the two activated colmeri toxins with P1 antiserum neutralized their cytotoxicity to both lepidopteran and dipteran cell lines.  相似文献   
77.
Part of the gene encoding penicillin-binding protein 5 from Bacillus subtilis 168 was cloned in Escherichia coli with a synthetic oligonucleotide as a hybridization probe. The gene was designated dacA by analogy with E. coli. The nucleotide sequence was determined, and the predicted molecular mass was 45,594 daltons (412 amino acids). A comparison of the predicted amino acid sequence with that of the E. coli penicillin-binding protein 5 indicated that these enzymes showed about 25% identity. The B. subtilis dacA gene was mutated by integration of a plasmid into the structural gene by homologous recombination. A comparison of the mutant and control strains revealed that (i) the mutant lacked detectable penicillin-binding protein 5, (ii) the D-alanine carboxypeptidase activity of membranes isolated from the mutant was only 5% of that measured in membranes from the control strain, (iii) the mutant cells showed apparently normal morphology only during exponential growth, and after the end of exponential phase the cells became progressively shorter, (iv) the mutant sporulated normally except that the forespore occupied about two-thirds of the mother cell cytoplasm and, during its development, migrated towards the center of the mother cell, and (v) purified mutant spores were 10-fold less heat resistant but possessed normal refractility and morphology. Preliminary chemical analysis indicated that the structure of the cortex of the mutant was different.  相似文献   
78.
A series of deletion mutants have been constructed from the dual toxicity Bacillus thuringiensis aizawai IC1 (Bta IC1) crystal protein gene. The mutant toxin genes were expressed in Escherichia coli, their protein products purified and the authenticity of these mutant proteins confirmed immunologically. Analysis of the toxicity spectra of these mutants revealed that lepidopteran toxicity is located on the N-terminal region of the toxin between residues Ile30-Glu595. 3' deletion of a further 37 residues from Glu595 of the lepidopteran-specific toxin abolished lepidopteran toxicity but the resulting protein consisting of residues Ile30-Gly558 was still fully toxic to dipteran larvae and cells. Another mutant crystal protein gene truncated to encode residues between Ile30-Gly563 was toxic only to diptera. These data indicate that the determinants of lepidopteran specificity in the Bta IC1 toxin are located between residues Gly558-Glu595 and that the N-terminal portion of the toxin between Ile30-Gly558 is sufficient to express dipteran toxicity.  相似文献   
79.
Abstract A glycine-histidine tag (Gly3His6) was added to the C-terminus of a fusion protein consisting of the cholera toxin B-subunit (CtxB) and the IgA protease β-domain (Iga β). The aim was to facilitate single-step purification and to create a suitable tool for kinetic and structural studies on Iga β-driven protein translocation across the outer membrane of Gram-negative bacteria. We demonstrate that the glycine-histidine tag does not interfere with the assembly of Iga β in the outer membrane and that the translocator function of the modified Iga β is maintained. The applicability of the new construct for the dissection of the Iga β mediated translocation process and general aspects of C-terminal histidine tagging of outer membrane proteins are discussed.  相似文献   
80.
A δ-endotoxin gene previously cloned from Bacillus thuringiensis subsp. galleriae has been shown by a combination of restriction mapping and DNA sequence analysis to be a cryIIB clone; in common with other cryIIB genes it was found to lack a functional promoter. Addition of a promoter resulted in expression of the gene in Bacillus thuringiensis but did not result in the formation of the crystalline inclusions normally associated with such toxins. Inclusion formation was only observed when the gene was incorporated into an operon containing a gene known to be involved in the crystallisation of another δ-endotoxin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号