首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   3篇
  2013年   4篇
  2012年   5篇
  2011年   9篇
  2010年   5篇
  2009年   4篇
  2008年   6篇
  2007年   2篇
  2006年   6篇
  2005年   5篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1986年   5篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1972年   4篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1959年   2篇
  1958年   3篇
  1957年   4篇
  1956年   1篇
  1955年   5篇
  1954年   1篇
  1953年   2篇
  1952年   6篇
  1951年   2篇
  1950年   1篇
  1949年   3篇
  1948年   2篇
  1945年   2篇
排序方式: 共有149条查询结果,搜索用时 484 毫秒
51.
The campound 3-methyleneoxindole was synthesized and tested in three “biological systems for auxin activity: Root initarion in pea stem currings, extension growth of etiolated pea stem segments and Avena first internodes. In none of the systems was found any effect — positive or negative of methyleneoxindole. It thus seems improbable that the compound participates in the growth regulation of these plants.  相似文献   
52.
Long‐term ecological studies are critical for providing key insights in ecology, environmental change, natural resource management and biodiversity conservation. In this paper, we briefly discuss five key values of such studies. These are: (1) quantifying ecological responses to drivers of ecosystem change; (2) understanding complex ecosystem processes that occur over prolonged periods; (3) providing core ecological data that may be used to develop theoretical ecological models and to parameterize and validate simulation models; (4) acting as platforms for collaborative studies, thus promoting multidisciplinary research; and (5) providing data and understanding at scales relevant to management, and hence critically supporting evidence‐based policy, decision making and the management of ecosystems. We suggest that the ecological research community needs to put higher priority on communicating the benefits of long‐term ecological studies to resource managers, policy makers and the general public. Long‐term research will be especially important for tackling large‐scale emerging problems confronting humanity such as resource management for a rapidly increasing human population, mass species extinction, and climate change detection, mitigation and adaptation. While some ecologically relevant, long‐term data sets are now becoming more generally available, these are exceptions. This deficiency occurs because ecological studies can be difficult to maintain for long periods as they exceed the length of government administrations and funding cycles. We argue that the ecological research community will need to coordinate ongoing efforts in an open and collaborative way, to ensure that discoverable long‐term ecological studies do not become a long‐term deficiency. It is important to maintain publishing outlets for empirical field‐based ecology, while simultaneously developing new systems of recognition that reward ecologists for the use and collaborative sharing of their long‐term data sets. Funding schemes must be re‐crafted to emphasize collaborative partnerships between field‐based ecologists, theoreticians and modellers, and to provide financial support that is committed over commensurate time frames.  相似文献   
53.
54.
55.
56.
57.
Riverine transport of organic carbon (OC) to the ocean is a significant component in the global carbon (C) cycle and the concentration of total organic carbon (TOC) in rivers and lakes is vital for ecosystem properties and water quality for human use. By use of a large dataset comprising chemical variables and detailed catchment information in ~1000 Norwegian pristine lakes covering a wide climatic range, we were able to predict TOC concentrations with high accuracy. We further predict, using a ‘space‐for‐time’ approach and a downscaled, moderate, climate change scenario, that northern, boreal regions likely will experience strong increases in OC export from catchments to surface waters. Median concentrations of OC in these lakes will increase by 65%, from the current median of 2.0–3.3 mg C L?1. This is a long‐term effect, primarily mediated by increased terrestrial vegetation cover in response to climate change. This increase OC will have severe impacts on food‐webs, productivity and human use. Given the robustness of the estimates and the general applicability of the parameters, we suggest that these findings would be relevant to boreal areas in general.  相似文献   
58.
We report on the characterization and mapping of 76 simple sequence repeat (SSR) markers for Lolium perenne. These markers are publicly available or obtained either from genomic libraries enriched for SSR motifs or L. perenne expressed sequence tag (EST) clones. Four L. perenne mapping populations were used to map the SSR markers. A consensus linkage map of the four mapping populations containing 65 of the SSR markers is presented, together with primer information and a quality score indicating the usefulness of the SSR marker in different populations. The SSR markers identified all seven L. perenne linkage groups.  相似文献   
59.
Abstract Every year large proportions of northern Australia's tropical savanna landscapes are burnt, resulting in high fire frequencies and short intervals between fires. The dominant fire management paradigm in these regions is the use of low‐intensity prescribed fire early in the dry season, to reduce the incidence of higher‐intensity, more extensive wildfire later in the year. This use of frequent prescribed fire to mitigate against high‐intensity wildfire has parallels with fire management in temperate forests of southern Australia. However, unlike in southern Australia, the ecological implications of high fire frequency have received little attention in the north. CSIRO and collaborators recently completed a landscape‐scale fire experiment at Kapalga in Kakadu National Park, Northern Territory, Australia, and here we provide a synthesis of the effects of experimental fire regimes on biodiversity, with particular consideration of fire frequency and, more specifically, time‐since‐fire. Two recurring themes emerged from Kapalga. First, much of the savanna biota is remarkably resilient to fire, even of high intensity. Over the 5‐year experimental period, the abundance of most invertebrate groups remained unaffected by fire treatment, as did the abundance of most vertebrate species, and we were unable to detect any effect of fire on floristic composition of the grass‐layer. Riparian vegetation and associated stream biota, as well as small mammals, were notable exceptions to this general resilience. Second, the occurrence of fire, independent of its intensity, was often the major factor influencing fire‐sensitive species. This was especially the case for extinction‐prone small mammals, which have suffered serious population declines across northern Australia in recent decades. Results from Kapalga indicate that key components of the savanna biota of northern Australia favour habitat that has remained unburnt for at least several years. This raises a serious conservation concern, given that very little relatively long unburnt habitat currently occurs in conservation reserves, with most sites being burnt at least once every 2 years. We propose a conservation objective of increasing the area that remains relatively long unburnt. This could be achieved either by reducing the proportion of the landscape burnt each year, or by setting prescribed fires more strategically. The provision of appropriately long unburnt habitat is a conservation challenge for Australia's tropical savanna landscapes, just as it is for its temperate forests.  相似文献   
60.
Abstract Tropical savannas and rainforests contrast in their flammability and the fire resilience of their associated species. While savanna species generally exhibit high resilience to burning, there is much debate about the fire resilience of forest‐associated species, and the persistence of forest patches in a flammable savanna matrix. Where fire has been excluded, savanna tends on a trajectory towards forest, with an increase in forest‐associated plants and animal species. This study tested the idea that given the high proportion of forest‐associated taxa in long‐unburnt savanna, the fauna of these areas would be expected to exhibit less resilience to fire than the fauna in frequently burnt savannas. The study investigated the immediate and short‐term effects on ant assemblages of re‐introducing fire into long‐unburnt savanna in northern Australia. The ant fauna exhibited high resistance to fires, with no significant short‐term change in mean abundance or species richness; instead, seasonality had a far stronger influence on overall ant activity. Fire caused dramatic declines in dominance of the patchily distributed forest‐associated species Oecophylla smaragdina and Papyrius sp., but had no effect on overall dominance by open savanna species of Iridomyrmex. Dominance by Iridomyrmex pallidus declined, but this was compensated for by increases in I. reburrus, while two other species of Iridomyrmex showed no change. This indicates a high level of functional redundancy among dominant species of Iridomyrmex, which universally dominate open savanna communities, but not of dominant forest‐associated species. Overall, our findings demonstrate a high degree of fire‐resilience of the long‐unburnt savanna ant fauna. Despite the occurrence of forest‐associated species, the high proportion of savanna species persisting in this habitat means that long‐unburnt savanna retains the general response characteristics of frequently burnt savanna.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号