首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   0篇
  2016年   1篇
  2011年   2篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1977年   1篇
  1971年   1篇
  1970年   1篇
  1966年   1篇
  1959年   1篇
  1958年   1篇
  1957年   2篇
  1956年   4篇
  1955年   1篇
  1954年   2篇
  1953年   4篇
  1952年   6篇
  1951年   1篇
  1950年   3篇
  1949年   1篇
排序方式: 共有64条查询结果,搜索用时 375 毫秒
21.
Genes of the major histocompatibility complex (MHC) play a fundamental role in the vertebrate immune response and are amongst the most polymorphic genes in vertebrate genomes. It is generally agreed that the highly polymorphic nature of the MHC is maintained through host–parasite co‐evolution. Two nonexclusive mechanisms of selection are supposed to act on MHC genes: superiority of MHC heterozygous individuals (overdominance) and an advantage for rare MHC alleles. However, the precise mechanisms and their relative importance are still unknown. Here, we examined MHC dependent parasite load in European rabbits (Oryctolagus cuniculus) from a distinct population with low MHC diversity (three alleles, six genotypes). Using a multivariate approach, we tested for associations of individual MHC class II DRB constitution and the rabbits’ intestinal burden with nematodes and coccidia. Rabbits having a particular allele showed lower infestations with hepatic coccidia (E. stiedai). However, a comparison of all six genotypes in the population revealed that carriers of this allele only benefit when they are heterozygous, and furthermore, MHC heterozygosity in general did not affect individual parasite load. In conclusion, this study suggests an immunogenetic basis of European rabbit resistance to hepatic coccidiosis, which can strongly limit survival to maturity in this species. Our study gives a complex picture of MHC–parasite correlations, unveiling the limits of the classical hypotheses of how MHC polymorphism is maintained in natural systems.  相似文献   
22.
23.
24.
25.
26.
27.
Upper Jurassic‐Lower Cretaceous sponge biostromes and bafflestone mounds were common and widespread in European temperate to tropical marine environments. They declined markedly during the Late Cretaceous. Most sponge frameworks were paucispecific and ecologically simple, with only basic levels of succession or tiering. The occurrence of ecologically complex, lithistid sponge biostromes and mounds in the Cenomanian Quadersandstein Member, Regensburger Grünsandstein of the Saal Quarry, Bavaria, is therefore of special significance. These are ecologically the most complex sponge frameworks yet reported from the Cretaceous. Their size, morphology and ecological organization compare favorably with shallow‐water, sponge‐dominated frameworks in modern seas. The Saal Quarry sponge frameworks are generally associated with firmgrounds and condensed intervals in the transgressive systems tract of the Cenomanian‐Turonian, tectonoeustatic supercycle UZA‐2. The lowest sponge frameworks are up to 1 m high bafflestone mounds consisting of large, irregular, sheet‐ and mound‐like recumbent sponges overlain by diverse, cylindrical, pyriform, upward‐branching forms of Jerea and Siphonia. These biostromes overlie a condensed interval or firmground which locally contains small, in situ pyriform sponges (Jerea pyriformis Lamouroux) as well as Middle Cenomanian Inoceramus etheridgei Woods. The upper sponge frameworks consist of bafflestone mounds up to 4.4 m wide and 1.3 m high, composed of six lithistid sponge morphotypes, possibly representing several species of Jerea and Siphonia. The occurrence of Rotalipora cushmanni in strata overlying the upper sponge framework indicates a Late Cenomanian age. Morphotypes preserve internal sponge morphologies and partially dissolved spicules surrounded by a diagenetic halo of silicified, pelletoid grainstone and/or packstone. Silica cements were derived from spicule dissolution. Different combinations of these morphotypes dominate three to four successional stages of sponge framework growth, and show vertical ecological tiering within communities. This ecological zonation is consistent among frameworks, and is partially or wholly repeated between storm‐related disturbance events.  相似文献   
28.
Using the compartmental analysis the unidirectional Na+ fluxesin cortical cells of barley roots, the cytoplasmic and vacuolarNa+ contents Qc and Qv, and the trans-root Na+ transport R'have been studied as a function of the external Na+ concentration.Using the re-elution technique the effect of low K+ concentrationson the plasmalemma efflux co of Na+ (K+-Na+ exchange) and onR' was investigated at different Na+ concentrations and correspondinglydifferent values of the cytoplasmic sodium content Qc. The relationof the K+-dependent Na+ efflux coK+-dep to Qc or to the cytoplasmicNa+ concentration obeyed Michaelis-Menten kinetics. This isconsistent with a linkage of co, K+-dep to K+ influx by a K+-Na+exchange system. The apparent Km corresponded to a cytoplasmicNa+ concentration of 28 mM at 0·2 mM K+ and about 0·2mM Na+ in the external solution. 0·2 mM K+ stimulatedthe plasma-lemma efflux of Na+ and inhibited Na+ transport selectivelyeven in the presence of 10 mM Na+ in the external medium showingthe high efficiency of the K+-Na+ exchange system. However,co, K+-dep was inhibited at 10 mM Na1 compared to lower Na1concentrations suggesting some competition of Na1 with K1 atthe external site of the exchange system. The effect of theNa+ concentration on Na1 influx oc is discussed with respectto kinetic models of uuptake.  相似文献   
29.
30.
Steady state phosphate relations are determined for the marinealga Acetabularia mediterranea with respect to cellular phosphatepools and phosphate transport. About 20% of the cellular acid-labilephosphate is found in the cell wall fraction (low speed sediment).By the use of cytoplasm-depleted cell segments, it isa establishedthat only about 10% of the total intracellular phosphate islocalized in the vacuole when cells are bathed in normal phosphateconcentration (<30 µM). Measurements of ATP, ADP, AMPand inorganic phosphate (Pj) in the entire cytoplasm and inisolated chloroplasts has enabled the calculation of the cytosolicadenylate energy charge (0.7–0.9) and phosphate potential(110–170 mV). Influx of 32P, displays complex kinetics.Four components for uptake (approximate time constants: (A)1 s, (B) 20 s, (C) 300 s and (D) 3000 s) are tentatively identified.Focusing on the faster components, B and C, and possibly evenA, appear to be metabolically-linked, as judged by their sensitivityto temperature and to the inhibitor 2, 4-dinitrophenol. Thesethree components of influx are proportional to the externalP, concentration for values <30 µM, but B and C tendto saturate at higher concentrations. The results are discussedwith respect to the energetics of transport at the plasmalemmaof Acetabularia, especially the activity of the electrogenicCI-ATPase. Key words: Acetabularia, Energy charge, Phosphate pools, Phosphate potential, Phosphate uptake kinetics  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号