首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   2篇
  2013年   5篇
  2011年   3篇
  2010年   3篇
  2009年   8篇
  2008年   5篇
  2007年   11篇
  2006年   6篇
  2005年   2篇
  2004年   5篇
  2002年   2篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   8篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1989年   9篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1982年   7篇
  1981年   2篇
  1980年   3篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1964年   2篇
  1963年   2篇
  1960年   1篇
  1958年   3篇
  1957年   1篇
  1956年   1篇
  1954年   6篇
  1953年   1篇
  1952年   4篇
  1951年   3篇
  1950年   1篇
  1948年   5篇
  1947年   1篇
排序方式: 共有193条查询结果,搜索用时 31 毫秒
91.
92.
93.
94.
The comparative genetic structure of hosts and their parasites has important implications for their coevolution, but has been investigated in relatively few systems. In this study, we analysed the genetic structure and diversity of the New Zealand intertidal snail Zeacumantus subcarinatus ( n  =   330) and two of its trematode parasites, Maritrema novaezealandensis ( n  =   269) and Philophthalmus sp. ( n  =   246), using cytochrome c oxidase subunit I gene ( COI ) sequences. Snails and trematodes were examined from 11 collection sites representing three regions on the South Island of New Zealand. Zeacumantus subcarinatus displayed low genetic diversity per geographic locality, strong genetic structure following an isolation by distance pattern, and low migration rates at the scale of the study. In contrast, M. novaezealandensis possessed high genetic diversity, genetic homogeneity among collection sites and high migration rates. Genetic diversity and migration rates were typically lower for Philophthalmus sp. compared to M. novaezealandensis and it displayed weak to moderate genetic structure. The observed patterns likely result from the limited dispersal ability of the direct developing snail and the utilization of bird definitive hosts by the trematodes. In addition, snails may occasionally experience long-distance dispersal. Discrepancies between trematode species may result from differences in their effective population sizes and/or life history traits.  相似文献   
95.
Isoprene synthesis protects transgenic tobacco plants from oxidative stress   总被引:1,自引:0,他引:1  
Isoprene emission represents a significant loss of carbon to those plant species that synthesize this highly volatile and reactive compound. As a tool for studying the role of isoprene in plant physiology and biochemistry, we developed transgenic tobacco plants capable of emitting isoprene in a similar manner to and at rates comparable to a naturally emitting species. Thermotolerance of photosynthesis against transient high-temperature episodes could only be observed in lines emitting high levels of isoprene; the effect was very mild and could only be identified over repetitive stress events. However, isoprene-emitting plants were highly resistant to ozone-induced oxidative damage compared with their non-emitting azygous controls. In ozone-treated plants, accumulation of toxic reactive oxygen species (ROS) was inhibited, and antioxidant levels were higher. Isoprene-emitting plants showed remarkably decreased foliar damage and higher rates of photosynthesis compared to non-emitting plants immediately following oxidative stress events. An inhibition of hydrogen peroxide accumulation in isoprene-emitting plants may stall the programmed cell death response which would otherwise lead to foliar necrosis. These results demonstrate that endogenously produced isoprene provides protection from oxidative damage.  相似文献   
96.
Cities are rapidly growing throughout the world and are altering biologic processes in many regions, with global consequences. Urbanization in the Phoenix, USA metropolitan region has dramatically altered regional ecosystem patterns, but little is known about how these changes have influenced soil organic matter, total nitrogen, and the distribution of nitrogen stable isotopes. Because urban development is a phenomenon occurring at multiple scales, ecological consequences of urbanization will likely differ between individual patches and the entire metropolitan region. To investigate such changes we conducted spatially explicit surveys including three dominant land‐use types in this region: native desert, agriculture, and mesic residential. These data were combined for analysis with previously collected samples from a synoptic regional survey. A landscape scaling approach was implemented to compare the dependence of soil variability on the sampled extent and the uncertainty associated with scaling from points to patches, land‐use types, and the Phoenix metropolitan region. The multiple‐scale analysis of soil properties showed that variation in total soil nitrogen, soil organic matter, and δ5N content of soils differed between patch and regional scales. The majority of variation in the urbanized patch types was exhibited between patches while for the native desert the majority of variation was observed within individual patches. These differences show the impact of urbanization on the scaling relations of ecosystem components. Overall, urbanization in this region appears to have increased soil organic matter by 44%, total nitrogen by 48%, and has elevated δ15N by 21%.  相似文献   
97.
98.
In northern ecosystems, the onset and growth of spring photosynthesis may have an important influence on the annual carbon (C) budget, yet the controls have not been clearly identified, especially for peatlands. We used a 5‐year set of daily carbon dioxide (CO2) exchange measurements derived from an eddy covariance tower located at Mer Bleue, an ombrotrophic bog near Ottawa, Canada, from March to May [day‐of‐year (DOY) 60–150], 1999–2003. We used half‐hourly measured net ecosystem exchange minus modelled ecosystem respiration to estimate daily photosynthesis, as gross ecosystem production (GEP). The onset of GEP in each year was closely related to the thinning and disappearance of the snow cover, occurring between DOY 86 and 101. GEP increased during the spring, reaching 10‐day average values of between 5 and 9 g CO2 m?2 day?1 by the end of May. This increase was initially associated with moss activity (Sphagnum and Polytrichum), followed by the evergreen shrubs. Peat temperatures in the rooting zone (10–20 cm depth) and increases in shrub leaf nitrogen and chlorophyll a concentrations contributed to this rapid increase in GEP. Examination of moderate‐resolution imaging spectroradiometer (MODIS) images over several years revealed that the temporal resolution (16‐day composites) was inadequate to capture the onset of GEP but estimates of gross primary productivity and photosynthesis from MODIS 8‐day composites for the most part followed the pattern and magnitude of CO2 exchange observed at the tower.  相似文献   
99.
Mixotrophy, used herein for the combination of phototrophy and phagotrophy, is widespread among dinoflagellates. It occurs among most, perhaps all, of the extant orders, including the Prorocentrales, Dinophysiales. Gymnodiniales, Noctilucales, Gonyaulacales, Peridiniales, Blastodiniales. Phytodiniales, and Dinamoebales. Many cases of mixotrophy among dinoflagellates are probably undocumented. Primarily photosynthetic dinoflagellates with their “own” plastids can often supplement their nutrition by preying on other cells. Some primarily phagotrophic species are photosynthetic due to the presence of kleptochloroplasts or algal endosymbionts. Some parasitic dinoflagellates have plastids and are probably mixotrophic. For most mixotrophic dinoflagellates, the relative importance of photosynthesis, uptake of dissolved inorganic nutrients, and feeding are unknown. However, it is apparent that mixotrophy has different functions in different physiological types of dinoflagellates. Data on the simultaneous regulation of photosynthesis, assimilation of dissolved inorganic and organic nutrients, and phagotophy by environmental parameters (irradiance. availablity of dissolved nutrients, availability of prey) and by life history events are needed in order to understand the diverse roles of mixotrophy in dinoflagellates.  相似文献   
100.
Animals are known to influence and sometimes help maintain plant species richness in terrestrial systems. This study investigated the effects of mammals in influencing plant species richness of a floating Typha marsh at Point Pelee National Park. The extent of use of the marsh by terrestrial mammals was documented by mapping mammal trails from air photographs. Trail densities ranging from 70 to 1550 m ha–1 in various areas of the marsh, provided evidence for widespread, and in some places frequent, mammal activity. Plant surveys indicated a pattern of increased species richness and frequency associated with these trails, particularly in late summer when Typha biomass increased off trails. Three mechanisms by which mammals might influence species richness: disturbance of the dominant Typha, nutrient enrichment, and seed dispersal, were investigated using field and lab experiments. Two types of disturbance, trampling and herbivory, at two levels of intensity were simulated within 2×2m plots with and without fertilizer added. Disturbance significantly affected species richness; high levels of trampling decreased while high levels of clipping increased species richness. Nutrients had no effect; there were no significant disturbance×nutrients interactions. The importance of seed dispersal by raccoon was studied by collecting raccoon scat from within the marsh, incubating scat in a growth chamber and comparing the species that emerged to those growing in the marsh. Although substantial numbers of viable seeds of terrestrial species were found in scat, only one of these species was actually part of the Typha mat community. We concluded that mammals do influence plant species richness in this marsh primarily through disturbance of the dominant Typha.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号