首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   838篇
  免费   66篇
  国内免费   81篇
  2023年   8篇
  2022年   10篇
  2021年   16篇
  2020年   12篇
  2019年   19篇
  2018年   22篇
  2017年   22篇
  2016年   21篇
  2015年   21篇
  2014年   43篇
  2013年   60篇
  2012年   72篇
  2011年   52篇
  2010年   83篇
  2009年   52篇
  2008年   42篇
  2007年   33篇
  2006年   25篇
  2005年   26篇
  2004年   15篇
  2003年   7篇
  2002年   9篇
  2001年   9篇
  2000年   6篇
  1999年   11篇
  1998年   10篇
  1997年   9篇
  1996年   17篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1991年   3篇
  1987年   4篇
  1982年   3篇
  1980年   3篇
  1974年   2篇
  1973年   3篇
  1971年   2篇
  1959年   17篇
  1958年   32篇
  1957年   12篇
  1956年   15篇
  1955年   21篇
  1954年   21篇
  1953年   27篇
  1952年   19篇
  1951年   16篇
  1950年   19篇
  1949年   2篇
  1945年   2篇
排序方式: 共有985条查询结果,搜索用时 31 毫秒
61.
Malaria caused by Plasmodium parasites is one of the worst scourges of mankind and threatens wild animal populations. Therefore, identifying mechanisms that mediate the spread of the disease is crucial for both human health and conservation. Human‐induced climate change has been hypothesized to alter the geographic distribution of malaria pathogens. As the earth warms, arthropod vectors may display a general range expansion or may enjoy longer breeding season, both of which can enhance parasite transmission. Moreover, Plasmodium species may directly benefit for elevating temperatures, which provide stimulating conditions for parasite reproduction. To test for the link between climate change and malaria prevalence on a global scale for the first time, I used long‐term records on avian malaria, which is a key model for studying the dynamics of naturally occurring malarial infections. Following the variation in parasite prevalence in more than 3000 bird species over seven decades, I show that the infection rate by Plasmodium is strongly associated with temperature anomalies and has been augmented with accelerating tendency during the last 20 years. The impact of climate change on malaria prevalence varies across continents, with the strongest effects found for Europe and Africa. Migration habit did not predict susceptibility to the escalating parasite pressure by Plasmodium. Consequently, wild birds are at an increasing risk of malaria infection due to recent climate change, which can endanger both naïve bird populations and domesticated animals. The prevailing avian example may provide useful lessons for understanding the effect of climate change on malaria in humans.  相似文献   
62.
In woodland streams, the decomposition of allochthonous organic matter constitutes a fundamental ecosystem process, where aquatic hyphomycetes play a pivotal role. It is therefore greatly affected by water temperature and nutrient concentrations. The individual effects of these factors on the decomposition of litter have been studied previously. However, in the climate warming scenario predicted for this century, water temperature and nutrient concentrations are expected to increase simultaneously, and their combined effects on litter decomposition and associated biological activity remains unevaluated. In this study, we addressed the individual and combined effects of water temperature (three levels) and nutrient concentrations (two levels) on the decomposition of alder leaves and associated aquatic hyphomycetes in microcosms. Decomposition rates across treatments varied between 0.0041 day?1 at 5 °C and low nutrient level and 0.0100 day?1 at 15 °C and high nutrient level. The stimulation of biological variables at high nutrients and temperatures indicates that nutrient enrichment of streams might have a higher stimulatory effect on fungal performance and decomposition rates under a warming scenario than at present. The stimulation of fungal biomass and sporulation with increasing temperature at both nutrient levels shows that increases in water temperature might enhance fungal growth and reproduction in both oligotrophic and eutrophic streams. The stimulation of fungal respiration and litter decomposition with increasing temperature at high nutrients indicates that stimulation of carbon mineralization will probably occur at eutrophied streams, while oligotrophic conditions seem to be ‘protected’ from warming. All biological variables were stimulated when both factors increased, as a result of synergistic interactions between factors. Increased water temperature and nutrient level also affected the structure of aquatic hyphomycete assemblages. It is plausible that if water quality of presently eutrophied streams is improved, the potential stimulatory effects of future increases in water temperature on aquatic biota and processes might be mitigated.  相似文献   
63.
Fire is an important process in many ecosystems, but inappropriate fire regimes can adversely affect biodiversity. We identified a naturally flammable heathy woodland ecosystem where the use of planned fire had increased the extent of older vegetation, and quantified the abundance of two small native mammals in this landscape (silky mouse Pseudomys apodemoides and heath rat P. shortridgei). We defined four time‐since‐fire (TSF) categories representing a 2‐ to 55‐year post‐fire sequence and, on the basis of a habitat accommodation model, predicted that both species would select younger age‐classes over older ones. We also predicted that (i) much of the variance in vegetation structure would remain unexplained by TSF and (ii) statistical models of mammal abundance and occupancy including structural variables as predictors would be better than models including TSF. Pseudomys apodemoides selected 17‐ to 23‐year‐old sites, while there was no evidence that P. shortridgei selected a particular TSF category, findings that were inconsistent with our predictions. In line with our predictions, relatively large portions of the variance in vegetation structure remained unexplained by TSF (adjustedr2 for four structural variables: 0.24, 0.29, 0.35 and 0.57), and in three of four cases there was strong evidence that statistical models of mammal abundance and occupancy including structural variables were better than those including TSF. At the site scale (hectares), P. shortridgei abundance was positively related to the cover of dead material at the base of Xanthorrhoea plants and at the trap scale (metres), the trapability of both species was significantly related to vegetation volume at 0–20 cm. Our findings suggest that TSF may not be a good proxy for either vegetation structure or species abundance/occupancy.  相似文献   
64.
Leaf longevity and nutrient resorption efficiency are important strategies to conserve plant nutrients. Theory suggests a negative relationship between them and also proposes that high concentration of phenolics in long‐lived leaves may reduce nutrient resorption. In order to provide new evidence on these relationships, we explored whether N‐resorption efficiency is related to leaf longevity, secondary compounds and other leaf traits in coexisting plant species of different life forms in the arid Patagonian Monte, Argentina. We assessed N‐resorption efficiency, green leaf traits (leaf mass per area (LMA), leaf longevity and lignin, total soluble phenolics and N concentrations) and N concentration in senescent leaves of 12 species of different life forms (evergreen shrubs, deciduous shrubs and perennial grasses) with contrasting leaf traits. We found that leaf longevity was positively correlated to LMA and lignin, and negatively correlated to N concentration in green leaves. N concentrations both in green and senescent leaves were positively related. N‐resorption efficiency was not associated with the concentration of secondary compounds (total soluble phenolics and lignin) but it was negatively related to LMA and leaf longevity and positively related to N concentration in green leaves. Furthermore, leaf traits overlapped among life forms highlighting that life forms are not a good indicator of the functional properties (at least in relation to nutrient conservation) of species. In conclusion, our findings indicated that differences in N‐resorption efficiency among coexisting species were more related to N concentration in green leaves, leaf lifespan and LMA than to the presence of secondary compounds at least those assessed in our study (soluble phenolics and lignin). Accordingly, N‐resorption efficiency seems to be modulated, at least in part, by the productivity–persistence trade‐off.  相似文献   
65.
Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea.A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOS™ clones with insert sizes ∼20–40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs.Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter β-glucuronidase (GUS) fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AhHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue.This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor >40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae.  相似文献   
66.

Background

The cardiac regenerative potential of newly developed therapies is traditionally evaluated in rodent models of surgically induced myocardial ischemia. A generally accepted key parameter for determining the success of the applied therapy is the infarct size. Although regarded as a gold standard method for infarct size estimation in heart ischemia, histological planimetry is time-consuming and highly variable amongst studies. The purpose of this work is to contribute towards the standardization and simplification of infarct size assessment by providing free access to a novel semi-automated software tool. The acronym MIQuant was attributed to this application.

Methodology/Principal Findings

Mice were subject to permanent coronary artery ligation and the size of chronic infarcts was estimated by area and midline-length methods using manual planimetry and with MIQuant. Repeatability and reproducibility of MIQuant scores were verified. The validation showed high correlation (r midline length = 0.981; r area = 0.970 ) and agreement (Bland-Altman analysis), free from bias for midline length and negligible bias of 1.21% to 3.72% for area quantification. Further analysis demonstrated that MIQuant reduced by 4.5-fold the time spent on the analysis and, importantly, MIQuant effectiveness is independent of user proficiency. The results indicate that MIQuant can be regarded as a better alternative to manual measurement.

Conclusions

We conclude that MIQuant is a reliable and an easy-to-use software for infarct size quantification. The widespread use of MIQuant will contribute towards the standardization of infarct size assessment across studies and, therefore, to the systematization of the evaluation of cardiac regenerative potential of emerging therapies.  相似文献   
67.
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号