首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   865篇
  免费   109篇
  974篇
  2023年   8篇
  2021年   19篇
  2020年   11篇
  2019年   12篇
  2018年   11篇
  2017年   12篇
  2016年   14篇
  2015年   40篇
  2014年   32篇
  2013年   33篇
  2012年   41篇
  2011年   49篇
  2010年   30篇
  2009年   17篇
  2008年   37篇
  2007年   41篇
  2006年   41篇
  2005年   29篇
  2004年   27篇
  2003年   34篇
  2002年   17篇
  2001年   29篇
  2000年   27篇
  1999年   37篇
  1998年   9篇
  1997年   9篇
  1996年   13篇
  1995年   13篇
  1994年   14篇
  1993年   5篇
  1992年   32篇
  1991年   21篇
  1990年   16篇
  1989年   19篇
  1988年   15篇
  1987年   13篇
  1986年   17篇
  1985年   23篇
  1984年   13篇
  1983年   5篇
  1982年   12篇
  1981年   8篇
  1979年   8篇
  1978年   4篇
  1977年   8篇
  1976年   6篇
  1975年   5篇
  1974年   6篇
  1973年   3篇
  1972年   4篇
排序方式: 共有974条查询结果,搜索用时 15 毫秒
81.
After birth, stem cells in the subventricular zone (SVZ) generate neuroblasts that migrate along the rostral migratory stream (RMS) to become interneurons in the olfactory bulb (OB). This migration is crucial for the proper integration of newborn neurons in a pre-existing synaptic network and is believed to play a key role in infant human brain development. Many regulators of neuroblast migration have been identified; however, still very little is known about the intracellular molecular mechanisms controlling this process. Here, we have investigated the function of drebrin, an actin-binding protein highly expressed in the RMS of the postnatal mammalian brain. Neuroblast migration was monitored both in culture and in brain slices obtained from electroporated mice by time-lapse spinning disk confocal microscopy. Depletion of drebrin using distinct RNAi approaches in early postnatal mice affects neuroblast morphology and impairs neuroblast migration and orientation in vitro and in vivo. Overexpression of drebrin also impairs migration along the RMS and affects the distribution of neuroblasts at their final destination, the OB. Drebrin phosphorylation on Ser142 by Cyclin-dependent kinase 5 (Cdk5) has been recently shown to regulate F-actin-microtubule coupling in neuronal growth cones. We also investigated the functional significance of this phosphorylation in RMS neuroblasts using in vivo postnatal electroporation of phosphomimetic (S142D) or non-phosphorylatable (S142A) drebrin in the SVZ of mouse pups. Preventing or mimicking phosphorylation of S142 in vivo caused similar effects on neuroblast dynamics, leading to aberrant neuroblast branching. We conclude that drebrin is necessary for efficient migration of SVZ-derived neuroblasts and propose that regulated phosphorylation of drebrin on S142 maintains leading process stability for polarized migration along the RMS, thus ensuring proper neurogenesis.  相似文献   
82.
Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no‐take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short‐distance larval dispersal within regions (200 m to 50 km) and long‐distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best‐fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long‐distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.  相似文献   
83.
We have used monolayers of control 3T3 cells and 3T3 cells expressing transfected human neural cell adhesion molecule (NCAM) or chick N-cadherin as a culture substrate for PC12 cells. NCAM and N-cadherin in the monolayer directly promote neurite outgrowth from PC12 cells via a G-protein-dependent activation of neuronal calcium channels. In the present study we show that ganglioside GM1 does not directly activate this pathway in PC12 cells. However, the presence of GM1 (12.5-100 micrograms/ml) in the co-culture was associated with a potentiation of NCAM and N-cadherin-dependent neurite outgrowth. Treatment of PC12 cells with GM1 (100 micrograms/ml) for 90 min led to trypsin-stable increases in both beta-cholera toxin binding to PC12 cells and an enhanced neurite outgrowth response to N-cadherin. The ganglioside response could be fully inhibited by treatment with pertussis toxin. These data are consistent with exogenous gangliosides enhancing neuritic growth by promoting cell adhesion molecule-induced calcium influx into neurons.  相似文献   
84.
Identifying and interpreting the heterogeneity of farmer behaviour is becoming increasingly important in support of policy- and decision-making goals. This paper explores whether observed differences in farming practices can be interpreted from the heterogeneity of farmer behaviour. Farmer attitudes and objectives were analysed using a combination of principal components and cluster analysis applied to responses to statements in a telephone-based survey. Respondents were classified into four profiles; business-oriented, lifestylers, multifunctionalists and traditionalists. Each profile differed in terms of farm management practices, the amount of land farmers either managed or owned, the existence of successors and the importance placed on household members in providing information. The results suggest that knowledge of farmer behavioural profiles could support more targeted policy development that accounts for alternative farmer goals. However, similarities were also found between the profiles, suggesting that farmer behaviour would be better interpreted as a dynamic set of identities, rather than as static profiles.  相似文献   
85.
86.
To bypass a diverse range of fork stalling impediments encountered during genome replication, cells possess a variety of DNA damage tolerance (DDT) mechanisms including translesion synthesis, template switching, and fork reversal. These pathways function to bypass obstacles and allow efficient DNA synthesis to be maintained. In addition, lagging strand obstacles can also be circumvented by downstream priming during Okazaki fragment generation, leaving gaps to be filled post-replication. Whether repriming occurs on the leading strand has been intensely debated over the past half-century. Early studies indicated that both DNA strands were synthesised discontinuously. Although later studies suggested that leading strand synthesis was continuous, leading to the preferred semi-discontinuous replication model. However, more recently it has been established that replicative primases can perform leading strand repriming in prokaryotes. An analogous fork restart mechanism has also been identified in most eukaryotes, which possess a specialist primase called PrimPol that conducts repriming downstream of stalling lesions and structures. PrimPol also plays a more general role in maintaining efficient fork progression. Here, we review and discuss the historical evidence and recent discoveries that substantiate repriming as an intrinsic replication restart pathway for maintaining efficient genome duplication across all domains of life.  相似文献   
87.
The role of Ag in the recruitment and localization of naive, acutely activated, and memory CD8(+) T cells to the lung during influenza infection was explored using TCR-transgenic (Tg) mice. Naive, Thy1.2(+)CD8(+) OT-I TCR-Tg cells were primed and recruited to the lung after transfer into congenic Thy1.1(+) recipients challenged with a genetically engineered influenza virus (influenza A/WSN/33 (WSN)-OVA(I)) containing the K(b) restricted OVA(257-264) epitope (siinfekl) in the viral neuraminidase stalk. However, if the transferred animals were infected with a similar influenza virus that expressed an irrelevant K(b) epitope (WSN-PEPII), no TCR-Tg T cells were detectable in the lung, although they were easily visible in the lymphoid organs. Conversely, there were substantial numbers of OT-I cells found in the lungs of WSN-PEPII-infected mice when the animals had been previously, or were concurrently, infected with a recombinant vaccinia virus expressing OVA. Similar results were obtained with nontransgenic populations of memory CD8(+) T cells reactive to a murine gamma-herpesvirus-68 Ag. Interestingly, the primary host response to the immunodominant influenza nucleoprotein epitope was not affected by the presence of memory or recently activated OT-I T cells. Thus, although Ag is required to activate the T cells, the subsequent localization of T cells to the lung during a virus infection is a property of recently activated and memory T cells and is not necessarily driven by Ag in the lung.  相似文献   
88.
Protection of BALB/c (H-2d) mice against secondary challenge with influenza A viruses is primarily dependent on appropriate recognition of the hemagglutinin (HA) molecule by effectors of humoral immunity, the B lymphocytes and their product the immunoglobulin molecules. The influence of the antigenic form of the HA in eliciting protective antibodies is not clearly defined. We directly monitored the kinetics, character, localization, and helper T-cell dependence of the primary antibody-forming cell (AFC) response and the development of B-cell memory in lymphoid tissues associated with the upper and lower respiratory tracts, and in the spleen and bone marrow, to three forms of HA with various degrees of antigenic organization. Our results show that the antigenic organization of HA substantially influences B-cell immunity, namely, the capacity to generate both primary AFCs and memory B cells responsive to lethal challenge. Immunization by infection is the most efficient means of generating protective memory B cells, in contrast to subunit vaccine. The data also indicate that memory AFCs are predominantly localized to the regional lymphoid tissue where challenge HA is found, unlike primary AFCs, which are restricted to the priming site and which require in vivo CD4+ T-cell help.  相似文献   
89.
Although RhoA activity is necessary for promoting myogenic mesenchymal stem cell fates, recent studies in cultured cells suggest that down-regulation of RhoA activity in specified myoblasts is required for subsequent differentiation and myotube formation. However, whether this phenomenon occurs in vivo and which Rho modifiers control these later events remain unclear. We found that expression of the Rho-GTPase-activating protein, GRAF1, was transiently up-regulated during myogenesis, and studies in C2C12 cells revealed that GRAF1 is necessary and sufficient for mediating RhoA down-regulation and inducing muscle differentiation. Moreover, forced expression of GRAF1 in pre-differentiated myoblasts drives robust muscle fusion by a process that requires GTPase-activating protein-dependent actin remodeling and BAR-dependent membrane binding or sculpting. Moreover, morpholino-based knockdown studies in Xenopus laevis determined that GRAF1 expression is critical for muscle development. GRAF1-depleted embryos exhibited elevated RhoA activity and defective myofibrillogenesis that resulted in progressive muscle degeneration, defective motility, and embryonic lethality. Our results are the first to identify a GTPase-activating protein that regulates muscle maturation and to highlight the functional importance of BAR domains in myotube formation.  相似文献   
90.
Lipid metabolism is critical to coordinate organ development and physiology in response to tissue-autonomous signals and environmental cues. Changes to the availability and signaling of lipid mediators can limit competitiveness, adaptation to environmental stressors, and augment pathological processes. Two classes of lipids, the N-acyl amides and the 2-acyl glycerols, have emerged as important signaling molecules in a wide range of species with important signaling properties, though most of what is known about their cellular functions is from mammalian models. Therefore, expanding available knowledge on the repertoire of these lipids in invertebrates will provide additional avenues of research aimed at elucidating biosynthetic, metabolic, and signaling properties of these molecules. Drosophila melanogaster is a commonly used organism to study intercellular communication, including the functions of bioactive lipids. However, limited information is available on the molecular identity of lipids with putative biological activities in Drosophila. Here, we used a targeted lipidomics approach to identify putative signaling lipids in third instar Drosophila larvae, possessing particularly large lipid mass in their fat body. We identified 2-linoleoyl glycerol, 2-oleoyl glycerol, and 45 N-acyl amides in larval tissues, and validated our findings by the comparative analysis of Oregon-RS, Canton-S and w1118 strains. Data here suggest that Drosophila represent another model system to use for the study of 2-acyl glycerol and N-acyl amide signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号