首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1833篇
  免费   138篇
  2024年   4篇
  2023年   13篇
  2022年   32篇
  2021年   66篇
  2020年   45篇
  2019年   64篇
  2018年   75篇
  2017年   75篇
  2016年   99篇
  2015年   103篇
  2014年   118篇
  2013年   138篇
  2012年   138篇
  2011年   129篇
  2010年   89篇
  2009年   64篇
  2008年   106篇
  2007年   99篇
  2006年   77篇
  2005年   57篇
  2004年   52篇
  2003年   41篇
  2002年   40篇
  2001年   32篇
  2000年   19篇
  1999年   24篇
  1998年   8篇
  1997年   14篇
  1996年   16篇
  1995年   8篇
  1994年   3篇
  1993年   6篇
  1992年   11篇
  1991年   11篇
  1990年   7篇
  1989年   5篇
  1988年   5篇
  1987年   8篇
  1986年   9篇
  1985年   6篇
  1982年   9篇
  1980年   5篇
  1978年   3篇
  1977年   3篇
  1974年   2篇
  1970年   4篇
  1968年   8篇
  1967年   2篇
  1965年   4篇
  1964年   2篇
排序方式: 共有1971条查询结果,搜索用时 31 毫秒
181.
Various chromosomal banding techniques were utilized on the catfish, Iheringichthys labrosus, taken from the Capivara Reservoir. C-banding regions were evidenced in telomeric regions of most of the chromosomes. The B microchromosome appeared totally heterochromatic. The restriction endonuclease AluI produced a banding pattern similar to C-banding in some chromosomes; the B microchromosome, when present, was not digested by this enzyme and remained stained. G-banding was conspicuous in almost all the chromosomes, with the centromeres showing negative G-banding. When the restriction endonuclease BamHI was used, most of the telomeres remained intact, while some centromeres were weakly digested. The B chromosome was also not digested by this enzyme. The first pair of chromosomes showed a pattern of longitudinal bands, both with G-banding and BamHI; this was more evident with G-banding. This banding pattern can be considered a chromosomal marker for this population of I. labrosus.  相似文献   
182.
183.
The enzymatic hydrolysis of the glycosidic bond is central to numerous biological processes. Glycoside hydrolases, which catalyze these reactions, are grouped into families based on primary sequence similarities. One of the largest glycoside hydrolase families is glycoside hydrolase family 5 (GH5), which contains primarily endo-acting enzymes that hydrolyze beta-mannans and beta-glucans. Here we report the cloning, characterization, and three-dimensional structure of the Cellvibrio mixtus GH5 beta-mannosidase (CmMan5A). This enzyme releases mannose from the nonreducing end of mannooligosaccharides and polysaccharides, an activity not previously observed in this enzyme family. CmMan5A contains a single glycone (-1) and two aglycone (+1 and +2) sugar-binding subsites. The -1 subsite displays absolute specificity for mannose, whereas the +1 subsite does not accommodate galactosyl side chains but will bind weakly to glucose. The +2 subsite is able to bind to decorated mannose residues. CmMan5A displays similar activity against crystalline and amorphous mannans, a property rarely attributed to glycoside hydrolases. The 1.5 A crystal structure reveals that CmMan5A adopts a (beta/alpha)(8) barrel fold, and superimposition with GH5 endo-mannanases shows that dramatic differences in the length of three loops modify the active center accessibility and thus modulate the specificity from endo to exo. The most striking and significant difference is the extended loop between strand beta8 and helix alpha8 comprising residues 378-412. This insertion forms a "double" steric barrier, formed by two short beta-strands that function to "block" the substrate binding cleft at the edge of the -1 subsite forming the "exo" active center topology of CmMan5A.  相似文献   
184.
Double-stranded DNA is a therapeutic target for a variety of anticancer and antimicrobial drugs. Noncovalent interactions of small molecules with DNA usually occur via intercalation of planar compounds between adjacent base pairs or minor-groove recognition by extended crescent-shaped ligands. However, the dynamic and flexibility of the DNA platform provide a variety of conformations that can be targeted by structurally diverse compounds. Here, we propose a novel DNA-binding template for construction of new therapeutic candidates. Four bisphenylcarbazole derivatives, derived from the combined molecular architectures of known antitumor bisphenylbenzimidazoles and anti-infectious dicationic carbazoles, have been designed, and their interaction with DNA has been studied by a combination of biochemical and biophysical methods. The substitutions of the bisphenylcarbazole core with two terminal dimethylaminoalkoxy side chains strongly promote the interaction with DNA, to prevent the heat denaturation of the double helix. The deletion or the replacement of the dimethylamino-terminal groups with hydroxyl groups strongly decreased DNA interaction, and the addition of a third cationic side chain on the carbazole nitrogen reinforced the affinity of the compound for DNA. Although the bi- and tridentate molecules both derive from well-characterized DNA minor-groove binders, the analysis of their binding mode by means of circular and linear dichroism methods suggests that these compounds form intercalation complexes with DNA. Negative-reduced dichroism signals were recorded in the presence of natural DNA and synthetic AT and GC polynucleotides. The intercalation hypothesis was validated by unwinding experiments using topoisomerase I. Prominent gel shifts were observed with the di- and trisubstituted bisphenylcarbazoles but not with the uncharged analogues. These observations, together with the documented stacking properties of such molecules (components for liquid crystals), prompted us to investigate their binding to the human telomeric DNA sequence by means of biosensor surface plasmon resonance. Under conditions favorable to G4 formation, the title compounds showed only a modest interaction with the telomeric quadruplex sequence, comparable to that measured with a double-stranded oligonucleotide. Their sequence preference was explored by DNase I footprinting experiments from which we identified a composite set of binding sequences comprising short AT stretches and a few other mixed AT/GC blocks with no special AT character. The variety of the binding sequences possibly reflects the coexistence of distinct positioning of the chromophore in the intercalation sites. The bisphenylcarbazole unit represents an original pharmacophore for DNA recognition. Its branched structure, with two or three arms suitable to introduce a structural diversity, provides an interesting scaffold to built molecules susceptible to discriminate between the different conformations of nucleic acids.  相似文献   
185.
The relative toxicity of propylene oxide (PPO) at a low pressure of 100 mm Hg to four species of stored product insect at 30 degrees C over a 4-h exposure period was investigated. PPO at 100 mm Hg was toxic to all four species tested: Tribolium castaneum (Herbst), Plodia interpunctella (Hübner), Ephestia cautella (Wlk.), and Oryzaephilus surinamensis (L.). There were differences in susceptibility between the life stages of the tested insect species. Mortality tests on all life stages of the insects resulted in LD99 values ranging from 4.7 to 26.1 mg/liter. The pupal stage of E. cautella, O. surinamensis, and T. castaneum was the most tolerant stage with LD99 values of 14.4, 26.1, and 25.7 mg/liter, respectively. For P. interpunctella, the egg stage was most tolerant, with a LD99 value of 15.3 mg/liter. Generally, PPO at 100 mm Hg was more toxic to P. interpunctella and E. cautella than to O. surinamensis and T. castaneum. A 99% mortality of all life stages of the tested species was achieved at a concentrations x time product of 104.4 mg h/liter. These findings indicate that a combination of PPO with low pressure can render the fumigant a potential alternative to methyl bromide for rapid disinfestation of commodities.  相似文献   
186.
Corynebacterium pseudotuberculosis is a gram-positive bacterium that causes caseous lymphadenitis in sheep and goats. However, despite the economic losses caused by caseous lymphadenitis, there is little information about the molecular mechanisms of pathogenesis of this bacterium. Genomic libraries constructed in bacterial artificial chromosome (BAC) vectors have become the method of choice for clone development in high-throughput genomic-sequencing projects. Large-insert DNA libraries are useful for isolation and characterization of important genomic regions and genes. In order to identify targets that might be useful for genome sequencing, we constructed a C. pseudotuberculosis BAC library in the vector pBeloBAC11. This library contains about 18,000 BAC clones, with inserts ranging in size from 25 to 120 kb, theoretically representing a 390-fold coverage of the C. pseudotuberculosis genome (estimated to be 2.5-3.1 Mb). Many genomic survey sequences (GSSs) with homology to C. diphtheriae, C. glutamicum, C. efficiens, and C. jeikeium proteins were observed within a sample of 215 sequenced clones, confirming their close phylogenetic relationship. Computer analyses of GSSs did not detect chimeric, deleted, or rearranged BAC clones, showing that this library has low redundancy. This GSSs collection is now available for further genetic and physical analysis of the C. pseudotuberculosis genome. The GSS strategy that we used to develop our library proved to be efficient for the identification of genes and will be an important tool for mapping, assembly, comparative, and functional genomic studies in a C. pseudotuberculosis genome sequencing project that will begin this year.  相似文献   
187.
Gene silencing is an essential tool in gene discovery and gene therapy. Traditionally, viral delivery of antisense RNA and, more recently, small interfering RNA (siRNA) molecules in the form of small hairpin RNAs (shRNA) has been used as a strategy to achieve gene silencing. Nevertheless, the enduring challenge is to identify molecules that specifically and optimally silence a given target gene. In this study, we tested a set of adenovirus-delivered antisense RNA fragments and adenovirus-delivered shRNA molecules for their ability to target human transforming growth factor-beta type II receptor (TGFbetaRII). We used a dicistronic reporter, consisting of the coding sequences for TGFbetaRII and green fluorescent protein (GFP) to screen for optimal silencing agents targeting TGFbetaRII. Our results show, for both antisense RNA and shRNA molecules, that their effectiveness in the GFP screen correlated directly with their ability to reduce exogenously expressed TGFbetaRII. Unexpectedly, the antisense RNAs were unable to silence endogenous TGFbetaRII. In contrast, the shRNAs were able to silence endogenous TGFbetaRII. The shRNA that demonstrated the most pronounced effect on the dicistronic TGFbetaRII/GFP reporter reduced endogenous TGFbetaRII protein expression by 70% in A549 cells and reduced TGFbeta signaling by >80% in HeLa cells.  相似文献   
188.
We previously showed that agonistic antibodies to CD40 could substitute for CD4 T-cell help and prevent reactivation of murine gammaherpesvirus 68 (MHV-68) in the lungs of major histocompatibility complex (MHC) class II−/− (CII−/−) mice, which are CD4 T cell deficient. Although CD8 T cells were required for this effect, no change in their activity was detected in vitro. A key question was whether anti-CD40 treatment (or CD4 T-cell help) changed the function of CD8 T cells or another cell type in vivo. To address this question, in the present study, we showed that adoptive transfer of CD8 T cells from virus-infected wild-type mice or anti-CD40-treated CII−/− mice caused a significant reduction in lung viral titers, in contrast to those from control CII−/− mice. Anti-CD40 treatment also greatly prolonged survival of infected CII−/− mice. This confirms that costimulatory signals cause a change in CD8 T cells enabling them to maintain effective long-term control of MHV-68. We investigated the nature of this change and found that expression of the inhibitory receptor PD-1 was significantly increased on CD8 T cells in the lungs of MHV-68-infected CII−/−, CD40−/−, or CD80/86−/− mice, compared with that in wild-type or CD28/CTLA4−/− mice, correlating with the level of viral reactivation. Furthermore, blocking PD-1-PD-L1 interactions significantly reduced viral reactivation in CD4 T-cell-deficient mice. In contrast, the absence of another inhibitory receptor, NKG2A, had no effect. These data suggest that CD4 T-cell help programs a change in CD8 T-cell function mediated by altered PD-1 expression, which enables effective long-term control of MHV-68.Murine gammaherpesvirus 68 (MHV-68) is a naturally occurring rodent pathogen which is closely related to Epstein-Barr virus (EBV) and Kaposi''s sarcoma-associated herpesvirus (KSHV) (17, 64). Intranasal administration of MHV-68 to mice results in acute productive infection of lung epithelial cells and a latent infection in various cell types, including B lymphocytes, dendritic cells, epithelial cells, and macrophages (18, 19, 52, 53, 61, 65). The virus induces an inflammatory infiltrate in the lungs, lymph node enlargement, splenomegaly, and mononucleosis comprising increased numbers of activated CD8 T cells in the blood (53, 58). It has also been reported to induce lymphoproliferative disease/lymphoma in immunocompromised mice (30, 55, 60). Thus, the pathogenesis resembles that of EBV in humans, although structurally, the virus is more closely related to KSHV.Infectious MHV-68 is cleared from the lungs by a T-cell-dependent mechanism 10 to 15 days after infection (18, 53, 56). In wild-type mice, the lungs remain clear of replicating virus thereafter. Although CD4 T cells are not essential for primary clearance of replicating virus, they are required for effective long-term control (11). Thus, major histocompatibility complex (MHC) class II−/− mice that lack CD4 T cells or mice rendered CD4 deficient by antibody treatment initially clear infectious virus from the lungs. However, infectious virus reactivates in the lungs 10 to 15 days later and gradually increases in titer (11, 43). The infected CD4-deficient mice eventually die, apparently from long-term lung damage due to continuing lytic viral replication (11). MHC class II−/− mice do not produce antibody to T-dependent antigens (10). Cytotoxic T-lymphocyte (CTL) epitopes have been identified in open reading frame (ORF) 6 (p56, H-2Db-restricted), and ORF 61 (p79, H-2Kb-restricted) gene products, which appear to encode early lytic-phase proteins (32, 49). The epitopes are presented during two distinct phases during MHV-68 infection, which changes the pattern of CTL dominance (32, 51). However, there is no significant difference in the numbers of CD8 T cells specific for each epitope in wild-type mice and CD4 T-cell-deficient mice (4, 50). In addition, CTL activity measured in vitro does not differ substantially in the lungs of wild-type mice or CD4 T-cell-deficient mice (4, 11, 50). Furthermore, postexposure vaccination with the p56 epitope failed to prevent viral reactivation in class II−/− mice, despite dramatically expanding the number of CD8 T cells specific for the peptide (5). In contrast, vaccination of wild-type mice against these epitopes reduced lytic viral titers in the lung dramatically on subsequent challenge with MHV-68. B-cell-deficient mice clear MHV-68 with the kinetics of wild-type mice and do not show viral reactivation in the lungs (13, 61), suggesting that antibody is not essential for control of the virus. Depletion of CD4 T cells during the latent phase of infection in B-cell-deficient mice does not induce viral reactivation, whereas depletion of both CD4 and CD8 T-cell subsets provokes viral reactivation in the lungs (52). Short-term depletion of both CD4 and CD8 T-cell subsets during the latent phase of infection in wild-type mice does not lead to viral reactivation probably due to the presence of neutralizing antibody (11). Taken together, these results suggest that CD4 and CD8 T cells and B cells play overlapping roles in preventing or controlling reactivation of MHV-68 during the latent phase of infection. However, the B-cell- and CD8 T-cell-mediated control mechanisms do not develop in the absence of CD4 T cells.We, and others, have previously shown that the costimulatory molecule CD28 is not required for long-term control of MHV-68 (28, 29). However, interestingly, mice lacking both of the ligands for CD28, CD80 and CD86, show viral reactivation in the lung (21, 35). Our previously published data showed that agonistic antibodies to CD40 could substitute for CD4 T-cell function in the long-term control of MHV-68 (46). CD8 T-cell receptor-positive (TCR+) cells were required for this effect, while antibody production was not restored (45, 46). MHV-68-infected CD40L−/− mice (7) and CD40−/− mice (29) also showed viral reactivation in the lungs. However, no change in CD8 CTL activity was detected in in vitro assays following anti-CD40 treatment (46). A key question was whether anti-CD40 treatment (or CD4 T-cell help) caused a direct change in CD8 T-cell function or whether both CD8 T cells and an independent anti-CD40-sensitive step were required for viral control. To address this question, we used adoptive transfer of CD8 T cells from MHV-68-infected wild-type mice, anti-CD40-treated mice, or control MHC class II−/− mice to MHV-68-infected class II−/− recipients. We also investigated whether anti-CD40 treatment prolonged survival in addition to reducing lung viral titers. The heterodimeric molecule CD94/NKG2A has been implicated in negatively regulating the CD8 T-cell response to polyomavirus (38) and herpes simplex virus (HSV) (54), while the inhibitory receptor PD-1 (programmed death 1) has been implicated in T-cell exhaustion following infection with several other persistent viruses (2, 15, 20, 22, 26, 36, 39-41, 57, 67). In the present study, we investigated the effect of signaling via various costimulatory molecules on the expression of NKG2A and PD-1 and how these molecules influenced viral control.  相似文献   
189.
Enterocytes, a major cell population of the intestinal epithelium, represent one possible barrier to the entry of prions after oral exposure. We established a cell culture system employing enterocytes from different species to study alimentary prion interaction with the 37-kDa/67-kDa laminin receptor LRP/LR. Human, bovine, porcine, ovine, and cervid enterocytes were cocultured with brain homogenates from cervid, sheep, and cattle suffering from chronic wasting disease (CWD), scrapie, and bovine spongiform encephalopathy (BSE), respectively. PrPCWD, ovine PrPSc, and PrPBSE all colocalized with LRP/LR on human enterocytes. PrPCWD failed to colocalize with LRP/LR on bovine, porcine, and ovine enterocytes. Ovine PrPSc colocalized with the receptor on bovine enterocytes, but failed to colocalize with LRP/LR on cervid and porcine enterocytes. PrPBSE failed to colocalize with the receptor on cervid and ovine enterocytes. These data suggest possible oral transmissibility of CWD and sheep scrapie to humans and may confirm the oral transmissibility of BSE to humans, resulting in zoonotic variant Creutzfeldt-Jakob disease. CWD might not be transmissible to cattle, pigs, and sheep. Sheep scrapie might have caused BSE, but may not cause transmissible spongiform encephalopathy in cervids and pigs. BSE may not be transmissible to cervids. Our data recommend the enterocyte model system for further investigations of the intestinal pathophysiology of alimentary prion infections.  相似文献   
190.
The thioesterase FlK from the fluoroacetate-producing Streptomyces cattleya catalyzes the hydrolysis of fluoroacetyl-coenzyme A. This provides an effective self-defense mechanism, preventing any fluoroacetyl-coenzyme A formed from being further metabolized to 4-hydroxy-trans-aconitate, a lethal inhibitor of the tricarboxylic acid cycle. Remarkably, FlK does not accept acetyl-coenzyme A as a substrate. Crystal structure analysis shows that FlK forms a dimer, in which each subunit adopts a hot dog fold as observed for type II thioesterases. Unlike other type II thioesterases, which invariably utilize either an aspartate or a glutamate as catalytic base, we show by site-directed mutagenesis and crystallography that FlK employs a catalytic triad composed of Thr42, His76, and a water molecule, analogous to the Ser/Cys-His-acid triad of type I thioesterases. Structural comparison of FlK complexed with various substrate analogues suggests that the interaction between the fluorine of the substrate and the side chain of Arg120 located opposite to the catalytic triad is essential for correct coordination of the substrate at the active site and therefore accounts for the substrate specificity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号