全文获取类型
收费全文 | 14861篇 |
免费 | 1316篇 |
国内免费 | 18篇 |
专业分类
16195篇 |
出版年
2022年 | 106篇 |
2021年 | 207篇 |
2020年 | 104篇 |
2019年 | 149篇 |
2018年 | 202篇 |
2017年 | 141篇 |
2016年 | 294篇 |
2015年 | 476篇 |
2014年 | 540篇 |
2013年 | 730篇 |
2012年 | 935篇 |
2011年 | 968篇 |
2010年 | 632篇 |
2009年 | 621篇 |
2008年 | 827篇 |
2007年 | 842篇 |
2006年 | 821篇 |
2005年 | 822篇 |
2004年 | 853篇 |
2003年 | 863篇 |
2002年 | 889篇 |
2001年 | 185篇 |
2000年 | 109篇 |
1999年 | 171篇 |
1998年 | 233篇 |
1997年 | 173篇 |
1996年 | 129篇 |
1995年 | 126篇 |
1994年 | 131篇 |
1993年 | 162篇 |
1992年 | 114篇 |
1991年 | 119篇 |
1990年 | 115篇 |
1989年 | 85篇 |
1988年 | 100篇 |
1987年 | 101篇 |
1986年 | 89篇 |
1985年 | 128篇 |
1984年 | 109篇 |
1983年 | 113篇 |
1982年 | 136篇 |
1981年 | 143篇 |
1980年 | 117篇 |
1979年 | 76篇 |
1978年 | 95篇 |
1977年 | 91篇 |
1976年 | 81篇 |
1975年 | 62篇 |
1974年 | 99篇 |
1973年 | 81篇 |
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
101.
Genomic maps of chromatin modifications have provided evidence for the partitioning of genomes into domains of distinct chromatin states, which assist coordinated gene regulation. The maintenance of chromatin domain integrity can require the setting of boundaries. The HS4 insulator element marks the 3' boundary of a heterochromatin region located upstream of the chicken β-globin gene cluster. Here we show that HS4 recruits the E3 ligase RNF20/BRE1A to mediate H2B mono-ubiquitination (H2Bub1) at this insulator. Knockdown experiments show that RNF20 is required for H2Bub1 and processive H3K4 methylation. Depletion of RNF20 results in a collapse of the active histone modification signature at the HS4 chromatin boundary, where H2Bub1, H3K4 methylation, and hyperacetylation of H3, H4, and H2A.Z are rapidly lost. A remarkably similar set of events occurs at the HSA/HSB regulatory elements of the FOLR1 gene, which mark the 5' boundary of the same heterochromatin region. We find that persistent H2Bub1 at the HSA/HSB and HS4 elements is required for chromatin boundary integrity. The loss of boundary function leads to the sequential spreading of H3K9me2, H3K9me3, and H4K20me3 over the entire 50 kb FOLR1 and β-globin region and silencing of FOLR1 expression. These findings show that the HSA/HSB and HS4 boundary elements direct a cascade of active histone modifications that defend the FOLR1 and β-globin gene loci from the pervasive encroachment of an adjacent heterochromatin domain. We propose that many gene loci employ H2Bub1-dependent boundaries to prevent heterochromatin spreading. 相似文献
102.
Studies of RNA-binding peptides, and recent combinatorial library experiments in particular, have demonstrated that diverse peptide sequences and structures can be used to recognize specific RNA sites. The identification of large numbers of sequences capable of binding to a particular site has provided extensive phylogenetic information used to deduce basic principles of recognition. The high frequency at which RNA-binding peptides are found in large sequence libraries suggests plausible routes to evolve sequence-specific binders, facilitating the design of new binding molecules and perhaps reflecting characteristics of natural evolution. 相似文献
103.
Robert G. Sheath JoAnn M. Burkholder Mary O. Morison Alan D. Steinman Kathryn L. VanAlstyne 《Journal of phycology》1986,22(4):567-570
A spring-fed, headwater stream in central Rhode Island was examined during the period from June to October, 1979 to 1982. In the first two summers, a dense riparian canopy reduced the light penetration at the stream surface to a range of 5 to 18% of incident radiation. The lotic macroalgal community during this period was limited to 1 to 4 species covering < 1 to 35% of the stream bottom. However, in June and July, 1981, the surrounding leaf canopy was removed by a massive gypsy moth larval outbreak. Light penetration to the stream during this summer increased to 73% by early July, thereby resulting in a rise in water temperatures by 3.7°C. Even though there was a partial regrowth of leaves in late July and August of 1981, macroalgal cover values continued to rise to an early August peak of 80%. During the third summer, 88% of the macroalgal abundance could be attributed to illumination and water temperature. The filamentous diatom Funotia pectinalis ( O.F. Müll.) Rabh. was the predominant species in the midsummer of all four years, accounting for at least 60% of the total cover. In 1981. an important taxon was the desmid Hyalotheca dissiliens (S. Smith) Bréb., a species which was not seen in other years. A less severe gypsy moth defoliation occurred in 1982 but did not produce significant differences in light, temperature or macroalgal cover from 1979 and 1980. The results indicate that light and temperature can be limiting during the summer in spring-fed, headwater streams and that seed populations of some species are present in undetect-able levels during these periods of suboptimal growth conditions. In addition, it appears that stream macroalgal communities can be quite resilient, recovering rapidly following a major perturbation . 相似文献
104.
Athanasios Paschalis Simone Fatichi Jakob Zscheischler Philippe Ciais Michael Bahn Lena Boysen Jinfeng Chang Martin De Kauwe Marc Estiarte Daniel Goll Paul J. Hanson Anna B. Harper Enqing Hou Jaime Kigel Alan K. Knapp Klaus S. Larsen Wei Li Sebastian Lienert Yiqi Luo Patrick Meir Julia E. M. S. Nabel Rom Ogaya Anthony J. Parolari Changhui Peng Josep Peuelas Julia Pongratz Serge Rambal Inger K. Schmidt Hao Shi Marcelo Sternberg Hanqin Tian Elisabeth Tschumi Anna Ukkola Sara Vicca Nicolas Viovy Ying‐Ping Wang Zhuonan Wang Karina Williams Donghai Wu Qiuan Zhu 《Global Change Biology》2020,26(6):3336-3355
Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a new model‐data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or irrigation experiments had been performed. The key results are as follows: (a) Inter‐model variation is generally large and model agreement varies with timescales. In severely water‐limited sites, models only agree on the interannual variability of evapotranspiration and to a smaller extent on gross primary productivity. In more mesic sites, model agreement for both water and carbon fluxes is typically higher on fine (daily–monthly) timescales and reduces on longer (seasonal–annual) scales. (b) Models on average overestimate the relationship between ecosystem productivity and mean rainfall amounts across sites (in space) and have a low capacity in reproducing the temporal (interannual) sensitivity of vegetation productivity to annual rainfall at a given site, even though observation uncertainty is comparable to inter‐model variability. (c) Most models reproduced the sign of the observed patterns in productivity changes in rainfall manipulation experiments but had a low capacity in reproducing the observed magnitude of productivity changes. Models better reproduced the observed productivity responses due to rainfall exclusion than addition. (d) All models attribute ecosystem productivity changes to the intensity of vegetation stress and peak leaf area, whereas the impact of the change in growing season length is negligible. The relative contribution of the peak leaf area and vegetation stress intensity was highly variable among models. 相似文献
105.
106.
Anderson AJ Nicholson JM Bakare O Butcher RJ Wilson TL Scott KR 《Bioorganic & medicinal chemistry》2006,14(4):997-1006
Structure-activity relationship studies were employed to synthesize a series of 3- and 3,4-substituted benzamides from 3-amino-2-cyclohexenones. An improved method for the synthesis of benzamides from 3-amino-2-cyclohexenones is presented which provided significantly higher yields (71-79%) for the reported compounds. NMR and X-ray structural analyses were undertaken to note the possible intra- and intermolecular interactions of the synthesized analogs. Molecular modeling studies were used to determine the minimized configuration and were compared to their X-ray structures for correlation. These new entities were evaluated as potential anticonvulsants and type IV phosphodiesterase inhibitors (PDE4). 相似文献
107.
Elastic network models (ENMs) are a class of simple models intended to represent the collective motions of proteins. In contrast to all‐atom molecular dynamics simulations, the low computational investment required to use an ENM makes them ideal for speculative hypothesis‐testing situations. Historically, ENMs have been validated via comparison to crystallographic B‐factors, but this comparison is relatively low‐resolution and only tests the predictions of relative flexibility. In this work, we systematically validate and optimize a number of ENM‐type models by quantitatively comparing their predictions to microsecond‐scale all‐atom simulations of three different G protein coupled receptors. We show that, despite their apparent simplicity, well‐optimized ENMs perform remarkably well, reproducing the protein fluctuations with an accuracy comparable to what one would expect from all‐atom simulations run for several hundred nanoseconds. Proteins 2010. © 2010 Wiley‐Liss, Inc. 相似文献
108.
109.