首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2855篇
  免费   36篇
  国内免费   3篇
  2015年   18篇
  2014年   20篇
  2013年   69篇
  2012年   71篇
  2011年   114篇
  2010年   164篇
  2009年   164篇
  2008年   152篇
  2007年   188篇
  2006年   104篇
  2005年   114篇
  2004年   52篇
  2003年   32篇
  2002年   27篇
  2001年   27篇
  2000年   23篇
  1999年   32篇
  1998年   61篇
  1997年   80篇
  1996年   66篇
  1995年   56篇
  1994年   55篇
  1993年   61篇
  1992年   54篇
  1991年   57篇
  1990年   60篇
  1989年   64篇
  1988年   50篇
  1987年   59篇
  1986年   56篇
  1985年   49篇
  1984年   35篇
  1983年   40篇
  1982年   24篇
  1981年   38篇
  1980年   37篇
  1979年   48篇
  1978年   32篇
  1977年   24篇
  1976年   17篇
  1975年   32篇
  1974年   34篇
  1973年   41篇
  1972年   58篇
  1971年   36篇
  1970年   15篇
  1969年   12篇
  1968年   11篇
  1954年   11篇
  1951年   11篇
排序方式: 共有2894条查询结果,搜索用时 15 毫秒
131.
Experiments were conducted to investigate the effect of concentrationof NH4+ in nutrient solution on root assimilation of NO3and to determine whether the NH4+NO3 interaction wasmodified in the presence of K+. Dark-grown, detopped corn seedlings(cv. Pioneer 3369A) were exposed for 8 h to 0.15 mM Ca(NO3)2and varying concentrations of (NH4)2SO4 in the absence or presenceof 0.15 mM K2SO4. The accelerated phase of NO3 uptakeappeared most sensitive to restriction by additions of 0.15mM (NH4)2SO4. In the absence of K+, the restriction increasedonly slightly even when solution (NH4)2SO4, was increased from0.15 mM to 12.5 mM which was accompanied by an increase of NH4+in the tissue from about 7.0 to 35 µmol g–1 fr.wt. of root. Increasing concentrations of solution NH4+ progressivelyinhibited net K+ uptake. At the highest solution NH4+ concentrations,there was an initial net efflux of K+ and no net influx occurredduring the treatment period. The severity of the NH4)SO4 restrictionof NO3 uptake was moderated considerably in the presenceof K+ as long as a net influx of K+ occurred. However, net influxof K+ was not associated with alteration of NH4+ uptake, assimilation,or accumulation in the root tissue. The lack of correlationbetween the severity of restriction of NO3 uptake andendogenous NHJ suggested the restriction resulted from an effectexerted by exogenous NH4+ which tended to saturate at lowersolution NHJ concentrations or by inhibitory factors generatedduring assimilation of NH4+. Several mechanisms were postulatedto account for the moderating influence of K+. In all experiments,root NO3 reduction was restricted by the presence ofambient NH4+. The quantitative decreases in reduction tendedto be less than decreases in NO3 uptake and therefore,could result from inhibition solely of uptake with subsequentlimitation in availability of substrate for the reduction process,but the possibility of a direct effect on reduction could notbe excluded.  相似文献   
132.
133.
A comparison was made of energy metabolism of nodulated N2 fixing plants and non-nodulated NO3-fed plants of Lupinus albus L. Growth, N-increment, root respiration (O2 uptake and CO2 production) and the contribution of a SHAM-sensitive oxidative pathway (the alternative pathway) in root respiration were measured. Both growth rate and the rate of N-increment were the same in both series of plants. The rate of root respiration, both O2 uptake and CO2 production, and the activity of the SHAM-sensitive pathway were higher in NO3-fed plants than in N2 fixing plants. The rate of ATP production in oxidative phosphorylation was computed also to be higher in NO3-fed plants. It is concluded that both carbohydrate costings and ATP costings for synthesis + maintenance of root material were lower in N2 fixing than in NO3-fed plants. The respiratory quotient of root respiration was 1.6 in N2-fixing plants and 1.4 in NO3-fed plants. These values were slightly higher than the values calculated on the basis of CO2 output due to N-assimilation and the experimental values of O2 uptake, but showed the same trend: highest in N2 fixing plants. Root respiration of NO3-fed plants showed a diurnal pattern (both O2 uptake, CO2 production and the activity of the SHAM-sensitive pathway), whilst no diurnal variation in root respiration was found in N2 fixing plants. However, C2H2 reduction did show a diurnal rhythm, which is suggested to be related to the diurnal variation in transpiration. Addition of NO3 to N2 fixing plants increased the rate of root respiration and the activity of the alternative pathway. This treatment did not decrease C2H2 reduction and H2 evolution within 4 days. Withdrawal of NO3-supply from NO3-fed plants decreased the rate of root respiration but had no effect on the relative activity of the alternative pathway. It is suggested that the higher rate of root respiration and the higher activity of the SHAM-sensitive pathway in NO3-fed plants is due to a larger supply of carbohydrates to the roots, partly due to a better photosynthetic performance of the shoots and partly due to a higher capacity of the roots to attract carbohydrates.  相似文献   
134.
135.
136.
137.
138.
Serial dilutions: Error effects and optimal designs   总被引:1,自引:0,他引:1  
  相似文献   
139.
140.
Soybeans [Glycine max(L.) Merr.] were harvested at various time periods after a 2-h exposure to either 0 or 0.5 μ1/1 ozone to determine the effects of ozone on selected enzymes. Carbohydrate metabolism was modified by a depression of glyceraldehyde 3-phaosphate dehydrogenase and an activation of glucose 6-phosphate dehydrogenase. Ozone did not alter the levels of RNase, protease, acid phosphatase or esterase as might be expected if ozone enhanced leaf senescence. The activities of phenylalanine ammonia lyase, polyphenol oxidase and peroxidase were initially depressed and then stimulated following the ozone exposure. The reactions of soybeans to an acute ozone stress were more nearly akin to those elicited in response to other stresses than to the process of senescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号