This article describes the phytochemical study of Cannabis sativa roots from northeastern Brazil. The dried plant material was pulverized and subjected to exhaustive maceration with ethanol at room temperature, obtaining the crude ethanolic extract (Cs-EEBR). The volatile compounds were analyzed by gas chromatography coupled with mass spectrometry (GC/MS), which allowed to identify 22 compounds by comparing the linear retention index (LRI), the similarity index (SI) and the fragmentation pattern of the constituents with the literature. By this technique the major compounds identified were: friedelan-3-one and β-sitosterol. In addition, two fractions were obtained from Cs-EEBR by classical column chromatography and preparative thin layer chromatography. These fractions were analyzed by NMR and IR and together with the mass spectrometry data allowed to identify the compounds: epifriedelanol, friedelan-3-one, β-sitosterol and stigmasterol. The study contributed to the phytochemical knowledge of Cannabis sativa, specifically the roots, as there are few reports on the chemical constituents of this part of the plant. 相似文献
Proteins from two species of the genusArtocarpus (A. integrifolia L. andA. incisa L.) were compared by ammonium sulphate fractionation, molecular sieve chromatography and SDS-polyacrylamide gel electrophoresis,
with special attention to the lectins. The protein content and hemagglutinating activity were markedly different in the two
seeds. The protein pattern obtained by both molecular sieve chromatography and SDS-polyacrylamide gel electrophoresis were
quite different. The only similarities found were the elution volume of the lectins in the Sephadex G-100 column and the lectin
bands (11 500 and 15 000 daltons) in SDS-polyacrylamide gel electrophoresis. 相似文献
The acute effect of palmitate on glucose metabolism in rat skeletal muscle was examined. Soleus muscles from Wistar male rats were incubated in Krebs-Ringer bicarbonate buffer, for 1 h, in the absence or presence of 10 mU/ml insulin and 0, 50 or 100 microM palmitate. Palmitate increased the insulin-stimulated [(14)C]glycogen synthesis, decreased lactate production, and did not alter D-[U-(14)C]glucose decarboxylation and 2-deoxy-D-[2,6-(3)H]glucose uptake. This fatty acid decreased the conversion of pyruvate to lactate and [1-(14)C]pyruvate decarboxylation and increased (14)CO(2) produced from [2-(14)C]pyruvate. Palmitate reduced insulin-stimulated phosphorylation of insulin receptor substrate-1/2, Akt, and p44/42 mitogen-activated protein kinases. Bromopalmitate, a non-metabolizable analogue of palmitate, reduced [(14)C]glycogen synthesis. A strong correlation was found between [U-(14)C]palmitate decarboxylation and [(14)C]glycogen synthesis (r=0.99). Also, palmitate increased intracellular content of glucose 6-phosphate in the presence of insulin. These results led us to postulate that palmitate acutely potentiates insulin-stimulated glycogen synthesis by a mechanism that requires its metabolization (Randle cycle). The inhibitory effect of palmitate on insulin-stimulated protein phosphorylation might play an important role for the development of insulin resistance in conditions of chronic exposure to high levels of fatty acids. 相似文献
Journal of Physiology and Biochemistry - Aerobic exercise training induces a unique cardioprotective phenotype, but it is becoming clear that it does not promote the same structural, functional,... 相似文献
Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.
Aromatase, the key enzyme in the conversion of androgens to estrogens, regulates the availability of these hormones in tissues and controls many physiological and behavioral processes. In fish and other vertebrates, the regulation of aromatase expression in the brain has been implicated in the modulation of male sexual and aggressive behaviors. Here, the pattern of mRNA expression of the brain aromatase isoform (encoded by the CYP19A2 gene also referred as CYP19b) was quantified at the peak of spawning season in brain macroareas from males and females of the blenny Salaria pavo originated from two populations displaying male alternative reproductive tactics but differing in their mating systems. In Trieste (Adriatic) nesting males aggressively defend nests and take the initiative in courtship and perform sexual displays more often than females while in Ria Formosa (Southern Portugal) the pattern is reversed as a result of shortage of appropriate nesting sites. Nesting males from Ria Formosa had overall higher levels of brain aromatase mRNA expression than nesting males from Trieste, suggesting a higher brain estrogen synthesis in these males. Since in some fish species exogenous estradiol administration has been shown to decrease sexual and agonistic behaviors, the higher levels of brain aromatase in Ria Formosa nesting males may explain their reduced expression of sexual and aggressive displays when compared with nesting males from Trieste. Alternatively, the higher brain aromatase levels in nesting males from Ria Formosa could be a mechanism to decrease the putative androgen-induced activation of aggressive and sexual displays by reducing the local availability of androgens through their metabolization into estrogens. Although females and parasitic female-like males also differ in their displays between populations, the interpopulational pattern of brain aromatase mRNA expression was similar, suggesting that other neuroendocrine agents mediate the expression of female and female-like behaviors. In conclusion, brain aromatase availability seems like a probable mechanism to regulate the effects of steroids on the brain circuits underlying the expression of sexual and agonistic displays in S. pavo. 相似文献
Hemozoin (Hz) is a heme crystal produced upon hemoglobin digestion as the main mechanism of heme disposal in several hematophagous organisms. Here, we show that, in the helminth Schistosoma mansoni, Hz formation occurs in extracellular lipid droplets (LDs). Transmission electron microscopy of adult worms revealed the presence of numerous electron-lucent round structures similar to LDs in gut lumen, where multicrystalline Hz assemblies were found associated to their surfaces. Female regurgitates promoted Hz formation in vitro in reactions partially inhibited by boiling. Fractionation of regurgitates showed that Hz crystallization activity was essentially concentrated on lower density fractions, which have small amounts of pre-formed Hz crystals, suggesting that hydrophilic-hydrophobic interfaces, and not Hz itself, play a key catalytic role in Hz formation in S. mansoni. Thus, these data demonstrate that LDs present in the gut lumen of S. mansoni support Hz formation possibly by allowing association of heme to the lipid-water interface of these structures. 相似文献
Plant development is the main factor that determines the insect-ontogeny interaction, since it leads to variations in resource
quality and availability. The aim of this study was to test the hypothesis that plant development and varying tannin concentration
leads to changes in species richness, abundance and composition of ants, free-feeding herbivores and galling insects associated
with Copaifera langsdorffii (Fabaceae). The plant ontogeny and tannin concentration effects on insects were tested on 60 individuals with height varying from 0.9
to 11.0 m. A positive correlation was observed for tree height and species richness and abundance of ants, free-feeding and
galling insects. In contrast, we did not find a significant relation between leaf tannin concentration and plant height, or
richness and abundance of the different insect guilds. The assemblage of ants (composition of species) did not change between
saplings and adults of C. langsdorffii. However, the assemblage of free-feeding herbivores and galling insects varied between the two development stages studied.
The present study reveals an ontogenetic succession pattern for herbivore insects along the C. langsdorffii growth, probably due to both indirect and direct benefits from the host plant architecture and quality. Those plants with
more complex architectures should support a wider diversity of insects, since they present higher number of sites for egg
laying, housing, feeding and better environmental conditions. This is the first work to investigate the host plant ontogeny
effect on insects in Cerrado “Savanna” vegetation. The pattern described, along with other previous studies, suggests a vast
occurrence of ontogenetic succession in tropical areas. 相似文献