首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   656693篇
  免费   75733篇
  国内免费   349篇
  732775篇
  2016年   7045篇
  2015年   10036篇
  2014年   11704篇
  2013年   16798篇
  2012年   18734篇
  2011年   19026篇
  2010年   12940篇
  2009年   12063篇
  2008年   16984篇
  2007年   17539篇
  2006年   16403篇
  2005年   15946篇
  2004年   15485篇
  2003年   15618篇
  2002年   14916篇
  2001年   27646篇
  2000年   27851篇
  1999年   22462篇
  1998年   8287篇
  1997年   8892篇
  1996年   8546篇
  1995年   8034篇
  1994年   7940篇
  1993年   8081篇
  1992年   19449篇
  1991年   19079篇
  1990年   18357篇
  1989年   18132篇
  1988年   16665篇
  1987年   16372篇
  1986年   15242篇
  1985年   15362篇
  1984年   12899篇
  1983年   11311篇
  1982年   8904篇
  1981年   8234篇
  1980年   7711篇
  1979年   12646篇
  1978年   10075篇
  1977年   9358篇
  1976年   8889篇
  1975年   9732篇
  1974年   10284篇
  1973年   10141篇
  1972年   9330篇
  1971年   8472篇
  1970年   7271篇
  1969年   7171篇
  1968年   6391篇
  1967年   5597篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Electron spin resonance spin-trapping methods were used to investigate the free radical production kinetics of neutrophils stimulated with phorbol myristate acetate (PMA) and opsonized zymosan (OPZ). Using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide, the principle spin adduct observed is DMPO-OH (trapped hydroxyl radical). The DMPO-OH ESR signal amplitude was observed to decay exponentially. In such cases a simple method may be used to analyze the raw kinetics amplitude data to yield true production rate and net production data. The method, pitfalls, and self-consistency criteria are illustrated with PMA and OPZ-stimulated neutrophils at 25 and 37 degrees C under varying oxygen tensions, and with noise-free simulated data. The simulations demonstrate that rate results are relatively insensitive to the precise choice of decay time constant, tc, while net production results are very sensitive to the choice of tc used to analyze the raw data. OPZ (0.6-2.4 mg/ml) yields a strong, sharp neutrophil burst which peaks in 2 min or less while PMA yields a slower burst which peaks in 3.4-14 min for PMA concentrations of 500-50 ng/ml, respectively. Increased oxygen tension during the PMA experiments increased the spin adduct lifetime. The methods presented are applicable to other cell systems or spin adducts which exhibit first order decay.  相似文献   
92.
Polypeptide growth factors that stimulate cell proliferation bind to cell surface receptors and activate intracellular signal transduction pathways. One major signalling pathway, initiated by phosphatidylinositol (PI) turnover, involves activation of protein kinase C. Some polypeptide growth factors, including mitogens that activate protein kinase C, induce a rapid increase in expression of the proto-oncogenes, c-myc and c-fos. In order to characterize the signal transduction pathways responsible for proto-oncogene activation, we treated Swiss 3T3 cells with the tumor promoter phorbol dibutyrate to generate cells deficient in protein kinase C. These cells were then stimulated with platelet extract, bombesin, or epidermal growth factor (EGF) and the levels of c-myc and c-fos mRNA were determined. Platelet extract or bombesin, which stimulate PI turnover, were substantially weaker inducers of c-myc and c-fos mRNA levels in the protein kinase C-depleted cells, although some variability with platelet extract was noted. EGF, which does not stimulate PI turnover in several cell systems, was by contrast a potent inducer of both proto-oncogenes whether or not the cells were deficient in protein kinase C. Pretreatment of cells with phorbol dibutyrate caused little or no change in the basal levels of c-myc or c-fos mRNA, but led to a small but significant increase in basal levels of ornithine decarboxylase mRNA. These results demonstrate that EGF and growth factors that activate PI turnover induce expression of the c-myc and c-fos proto-oncogenes through different pathways.  相似文献   
93.
Using 500-MHz 1H NMR spectroscopy we have investigated the branch specificity that bovine colostrum CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase shows in its sialylation of bi-, tri-, and tetraantennary glycopeptides and oligosaccharides of the N-acetyllactosamine type. The enzyme appears to highly prefer the galactose residue at the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch for attachment of the 1st mol of sialic acid in all the acceptors tested. The 2nd mol of sialic acid becomes linked mainly to the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6 branch in bi- and triantennary substrates, but this reaction invariably proceeds at a much lower rate. Under the conditions employed, the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch is extremely resistant to alpha 2----6-sialylation. A higher degree of branching of the acceptors leads to a decrease in the rate of sialylation. In particular, the presence of the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch strongly inhibits the rate of transfer of both the 1st and the 2nd mol of sialic acid. In addition, it directs the incorporation of the 2nd mol into tetraantennary structures toward the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch. In contrast, the presence of the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch has only minor effects on the rates of sialylation and, consequently, on the branch preference of sialic acid attachment. Results obtained with partial structures of tetraantennary acceptors indicate that the Man beta 1----4GlcNAc part of the core is essential for the expression of branch specificity of the sialyltransferase. The sialylation patterns observed in vivo in glycoproteins of different origin are consistent with the in vitro preference of alpha 2----6-sialyltransferase for the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch. Our findings suggest that the terminal structures of branched glycans of the N-acetyllactosamine type are the result of the complementary branch specificity of the various glycosyltransferases that are specific for the acceptor sequence Gal beta 1----4GlcNAc-R.  相似文献   
94.
The biosynthesis of the sesquiterpenoid juvenile hormone III (JH III) was studied using corpora allata of the cockroach Diploptera punctata incubated in vitro and a radiochemical assay for the hormone produced. The influence of several exogenous precursors such as glucose, trehalose, acetate, amino acids, and mevalonate on JH synthetic rates was studied. Glucose or trehalose were needed for an optimal rate of JH synthesis. Highest rates were achieved at trehalose concentrations below the normal hemolymph levels (35-40 mM). About one-third of the glucose utilized for the biosynthesis of JH III was metabolized through a pentose pathway, but acetyl-CoA derived from glucose was significantly diluted by acetyl-CoA from other sources. Amino acids provided both a source of carbon for JH III synthesis and a source of energy that allowed JH III synthesis from acetate and stimulated JH III synthesis from glucose. Acetate was a poor substrate, because it could not support JH III synthesis in long term incubations. The incorporation of exogenous mevalonate into JH III was dependent on the physiological state of the glands, but there was a significant dilution with endogenous mevalonate. This dilution reflected in part the poor penetration of mevalonate into the corpora allata cells, because JH synthesis in mevinolin-treated cells was not fully rescued by mevalonate.  相似文献   
95.
An enzymatic system has been isolated that catalyzes dihydroxylation of phthalate to form 1,2-dihydroxy-4,5-dicarboxy-3,5-cyclohexadiene with consumption of NADH and O2. This system is comprised of two proteins: a flavo-iron-sulfur protein with NADH-dependent oxidoreductase activity and a nonheme iron protein with oxygenase activity. Phthalate oxygenase is a large (approximately 217 kDa) protein composed of apparently identical 48-kDa monomers. The active enzyme has one Rieske-type [2Fe-2S] center and one mononuclear iron/monomer. Removal of the mononuclear iron by incubation with EDTA or with o-phenanthroline inhibits oxygenation; ferrous ion completely restores activity. No other metals are effective. Phthalate oxygenase is specific for phthalate or other closely related compounds. However, only phthalate is tightly coupled to NADH oxidation and O2 consumption with a stoichiometry of 1:1:1. Phthalate oxygenase is chemically competent to oxygenate phthalate when artificially supplied with reducing equivalents and O2. Phthalate oxygenase reductase is required, however, for efficient catalytic activity. The reductase is a monomeric 34-kDa flavo-iron-sulfur protein containing FMN and a plant-ferredoxin-type [2Fe-2S] center in a 1:1 ratio. Phthalate oxygenase reductase is specific for NADH but can pass electrons to a variety of acceptors, including: phthalate oxygenase, cytochrome c, ferricyanide, and dichlorophenolindophenol. This system is similar to other bacterial oxygenase systems involved in aromatic degradation including: benzoate dioxygenase, toluene dioxygenase, benzene dioxygenase, and 4-methoxybenzoate demethoxylase. However, phthalate oxygenase can be isolated in large quantities and is more stable than most other such systems.  相似文献   
96.
We identify the cyanogenic substrate for horseradish peroxidase (HRP) as a conjugated enamine and explore this unusual reaction using alpha-aminocinnamate (RH) as follows. 1) HRP catalyzes the oxidation of RH by O2 (and its peroxidation by H2O2 to form R-R) to produce, simultaneously, CN- and benzaldehyde cyanohydrin. 2) RH is transient and must be generated in situ. The properties of the cyanogenic reaction of HRP are independent of the method of preparation of RH (whether this be condensation of NH3 with phenylpyruvate, enzymatic hydrolysis of glycyldehydrophenylalanine, or oxidation of L-phenylalanine by L-amino acid oxidase). 3) The oxidation of RH is a free radical chain reaction initiated by HRP Compounds I and II (I (or II) + RH----R. + II (or HRP], propagated by RO2. (R. + O2----RO2., RO2. + RH----R. + RO2H), and terminated by recombination reactions such as 2R.----R2 and RO2.----R' + HO2. followed by R. + HO2.----RH + O2. KMnO4 and K3Fe(CN)6 can substitute for HRP. 4) The proximal precursor of CN- and cyanohydrin is postulated to be RO2H (phi-CH(-O2H)-CCO2-(= NH]. These results explain why cyanide is generated from the synergistic action of HRP and L-amino acid oxidase on aromatic L-amino acids and O2 and suggest that the requirement for a beta-aryl substituent on the enamine originates in the reaction of RH with HRP, or of R with O2, rather than the imine/enamine tautomerization of the L-amino acid oxidase product.  相似文献   
97.
Modification of calmodulin by protein carboxyl methyltransferase requires deamidation of one or more labile asparagine residues (Johnson, B.A., Freitag, N. E., and Aswad, D. W. (1985) J. Biol. Chem. 260, 10913-10916). We now show that deamidation results in the generation of two altered forms of calmodulin, designated A and B, which can be separated by electrophoresis under nondenaturing conditions. The A form is characterized by a larger apparent molecular radius, has only 10% the activity of native calmodulin when assayed for its ability to activate a Ca2+/calmodulin-dependent protein kinase from rat brain, and serves as an excellent substrate for the methyltransferase. The B form more closely resembles native calmodulin: it has an apparent molecular radius more like the native, exhibits about 40% the activity of native calmodulin, and is a relatively poor methyl acceptor. Evidence suggests that the A and B forms probably contain isoaspartate (A) and aspartate (B) in place of Asn-60 and/or Asn-97. Incubation of the A form with methyltransferase and S-adenosyl-L-methionine converts about half of the A form to an electrophoretic band indistinguishable from the B form. The activity of this partly converted calmodulin rises to 30-50% that of native calmodulin. These observations imply that the methyltransferase may have a biological role in restoring activity to proteins which contain abnormal isoaspartyl peptide bonds resulting from asparagine deamidation.  相似文献   
98.
The entire proton NMR spectrum of the aminoglycoside antibiotic neomycin B has been assigned at physiological pH by a combination of two-dimensional J-resolved and J-correlated and nuclear Overhauser enhancement difference spectroscopy. Unambiguous assignment of all four ring systems is possible without recourse to model or derivative compounds by observing nuclear Overhauser enhancements between as well as within rings. The subsequent assignment of the carbon 13 spectrum is simply achieved using two-dimensional heteronuclear J-correlated techniques. The proton NMR spectrum of a sonicated aqueous dispersion of the intracellular second messenger precursor phosphatidylinositol 4,5-bisphosphate is reported for the first time. The spectrum is consistent with a high degree of side chain unsaturation and a conformation for the myo-inositol head group, which appears highly mobile, in which all bulky substituents are equatorial (except the 2-hydroxyl). Addition of aliquots of phosphatidylinositol 4,5-bisphosphate to an aqueous buffered solution of neomycin B induces complex changes in the whole spectrum of the latter, including downfield shifts of differential magnitude for several well-resolved signals, viz. the anomerics, and the pair of methylene protons of the substituted cyclohexane. The complexation kinetics are fast on the NMR time scale at 25 degrees C. The binding results are discussed in terms of a tentative complexation geometry.  相似文献   
99.
The effect of 2,3-diphospho-D-glycerate on the sedimentation coefficient of carbon monoxide hemoglobin was correlated with the fraction of rapidly reacting hemoglobin observed subsequent to flash photolysis at 23 degrees C at pH 7.30 in buffers of 0.1 M ionic strength. Concentrations of the organic phosphate up to about 5 mM resulted in an increase in S20,w, consistent with an increase in the fraction of tetrameric hemoglobin. A decrease in rapidly reacting hemoglobin parallelled the increase in the sedimentation coefficient. Between 5 and 20 mM 2,3-diphosphoglycerate, S20,w decreased, suggesting that dissociation to dimers was enhanced. An increase in rapidly reacting hemoglobin was also observed in this concentration range. Similar sedimentation results were obtained with oxyhemoglobin at pH 7.00 and carbon monoxide hemoglobin at pH 7.06. Assuming single binding sites on each species, the dissociation constants for 2,3-diphosphoglycerate binding to tetrameric and dimeric HbCO are 0.2-0.3 mM and 2-5 mM at pH 7.30. This biphasic effect of this physiologically important organic phosphate on the state of aggregation of R state hemoglobin has not been previously reported, but it is similar to that previously noted with inositol hexaphosphate, which enhanced tetramer formation at low concentrations, while at higher concentrations it promoted hemoglobin dissociation to dimers (White, S. L. (1976) J. Biol. Chem. 251, 4763-4769; Gray, R. D. (1980) J. Biol. Chem. 255, 1812-1818).  相似文献   
100.
The chicken oocyte receptor for low and very low density lipoproteins has been identified and characterized. Receptor activity present in octyl-beta-D-glucoside extracts of oocyte membranes was measured by a solid phase filtration assay, and the receptor was visualized by ligand blotting. The protein had an apparent Mr of 95,000 in sodium dodecyl sulfate-polyacrylamide gels under nonreducing conditions and exhibited high affinity for apolipoprotein B-containing lipoproteins, but not for high density lipoproteins or lipoproteins in which lysine residues had been reductively methylated. Binding of lipoproteins was sensitive to EDTA, suramin, and treatment with Pronase. In these aspects, the avian oocyte system was analogous to the mammalian low density lipoprotein receptor in somatic cells. Furthermore, a structural relationship between the mammalian and avian receptors was revealed by immunoblotting: polyclonal antibodies directed against the purified bovine low density lipoprotein receptor reacted selectively with the 95-kDa chicken receptor present in crude oocyte membrane extracts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号