首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   789314篇
  免费   89248篇
  国内免费   555篇
  879117篇
  2018年   6806篇
  2016年   9375篇
  2015年   13479篇
  2014年   15343篇
  2013年   21982篇
  2012年   24822篇
  2011年   25181篇
  2010年   16831篇
  2009年   15547篇
  2008年   22071篇
  2007年   22862篇
  2006年   20969篇
  2005年   20472篇
  2004年   19827篇
  2003年   19296篇
  2002年   18483篇
  2001年   35540篇
  2000年   35850篇
  1999年   28589篇
  1998年   10432篇
  1997年   11045篇
  1996年   10628篇
  1995年   9759篇
  1994年   9734篇
  1993年   9699篇
  1992年   23695篇
  1991年   22878篇
  1990年   22124篇
  1989年   21870篇
  1988年   19835篇
  1987年   19160篇
  1986年   17760篇
  1985年   17656篇
  1984年   14895篇
  1983年   12905篇
  1982年   10086篇
  1981年   9065篇
  1980年   8569篇
  1979年   14153篇
  1978年   11165篇
  1977年   10237篇
  1976年   9620篇
  1975年   10385篇
  1974年   10975篇
  1973年   10838篇
  1972年   9765篇
  1971年   9047篇
  1970年   7517篇
  1969年   7301篇
  1968年   6519篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
We have identified and partially purified a growth inhibitor protein secreted by human diploid fibroblast cells. This protein is not secreted constitutively but only after induction with the double stranded hetero duplex polyriboinosinic:polyribocytidylic acid. The growth inhibitory activity has been purified 3,800-fold and has an estimated molecular mass of 12,000 daltons. The protein will inhibit the growth in culture of human diploid fibroblast cells, human cells derived from tumors, and mouse L cells. Although interferon-beta is secreted with the growth inhibitory protein, the partially purified growth inhibitory protein has no antiviral activity, and its activity is not neutralized by antibodies to interferon-alpha, interferon-beta, and interferon-gamma. We believe this growth inhibitory activity to reside in a newly defined protein and have named it fibroblast-derived growth inhibitor.  相似文献   
103.
The synthesis and processing of the human lysosomal enzyme alpha-galactosidase A was examined in normal and Fabry fibroblasts. In normal cells, alpha-galactosidase A was synthesized as an Mr = 50,500 precursor, which contained phosphate groups in oligosaccharide chains cleavable by endoglucosaminidase H. The precursor was processed via ill-defined intermediates to a mature Mr 46,000 form. Processing was complete within 3-7 days after synthesis. In the presence of NH4Cl and in I-cell fibroblasts, the majority of newly synthesized alpha-galactosidase A was secreted as an Mr = 52,000 form. For comparison, the processing and stability of alpha-galactosidase A were examined in fibroblasts from five unrelated patients with Fabry disease, which is caused by deficient alpha-galactosidase A activity. In one cell line, synthesis of immunologically cross-reacting polypeptides was not detectable. In another, the synthesis, processing, and stability of alpha-galactosidase A was indistinguishable from that in normal fibroblasts. In a third Fabry cell line, the mutation retarded the maturation of alpha-galactosidase A. Finally, in two cell lines, alpha-galactosidase A polypeptides were synthesized that were rapidly degraded following delivery to lysosomes. These results clearly indicate that Fabry disease comprises a heterogeneous group of mutations affecting synthesis, processing, and stability of alpha-galactosidase A.  相似文献   
104.
105.
Using 500-MHz 1H NMR spectroscopy we have investigated the branch specificity that bovine colostrum CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase shows in its sialylation of bi-, tri-, and tetraantennary glycopeptides and oligosaccharides of the N-acetyllactosamine type. The enzyme appears to highly prefer the galactose residue at the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch for attachment of the 1st mol of sialic acid in all the acceptors tested. The 2nd mol of sialic acid becomes linked mainly to the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6 branch in bi- and triantennary substrates, but this reaction invariably proceeds at a much lower rate. Under the conditions employed, the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch is extremely resistant to alpha 2----6-sialylation. A higher degree of branching of the acceptors leads to a decrease in the rate of sialylation. In particular, the presence of the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch strongly inhibits the rate of transfer of both the 1st and the 2nd mol of sialic acid. In addition, it directs the incorporation of the 2nd mol into tetraantennary structures toward the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch. In contrast, the presence of the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch has only minor effects on the rates of sialylation and, consequently, on the branch preference of sialic acid attachment. Results obtained with partial structures of tetraantennary acceptors indicate that the Man beta 1----4GlcNAc part of the core is essential for the expression of branch specificity of the sialyltransferase. The sialylation patterns observed in vivo in glycoproteins of different origin are consistent with the in vitro preference of alpha 2----6-sialyltransferase for the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch. Our findings suggest that the terminal structures of branched glycans of the N-acetyllactosamine type are the result of the complementary branch specificity of the various glycosyltransferases that are specific for the acceptor sequence Gal beta 1----4GlcNAc-R.  相似文献   
106.
107.
The biosynthesis of the sesquiterpenoid juvenile hormone III (JH III) was studied using corpora allata of the cockroach Diploptera punctata incubated in vitro and a radiochemical assay for the hormone produced. The influence of several exogenous precursors such as glucose, trehalose, acetate, amino acids, and mevalonate on JH synthetic rates was studied. Glucose or trehalose were needed for an optimal rate of JH synthesis. Highest rates were achieved at trehalose concentrations below the normal hemolymph levels (35-40 mM). About one-third of the glucose utilized for the biosynthesis of JH III was metabolized through a pentose pathway, but acetyl-CoA derived from glucose was significantly diluted by acetyl-CoA from other sources. Amino acids provided both a source of carbon for JH III synthesis and a source of energy that allowed JH III synthesis from acetate and stimulated JH III synthesis from glucose. Acetate was a poor substrate, because it could not support JH III synthesis in long term incubations. The incorporation of exogenous mevalonate into JH III was dependent on the physiological state of the glands, but there was a significant dilution with endogenous mevalonate. This dilution reflected in part the poor penetration of mevalonate into the corpora allata cells, because JH synthesis in mevinolin-treated cells was not fully rescued by mevalonate.  相似文献   
108.
An enzymatic system has been isolated that catalyzes dihydroxylation of phthalate to form 1,2-dihydroxy-4,5-dicarboxy-3,5-cyclohexadiene with consumption of NADH and O2. This system is comprised of two proteins: a flavo-iron-sulfur protein with NADH-dependent oxidoreductase activity and a nonheme iron protein with oxygenase activity. Phthalate oxygenase is a large (approximately 217 kDa) protein composed of apparently identical 48-kDa monomers. The active enzyme has one Rieske-type [2Fe-2S] center and one mononuclear iron/monomer. Removal of the mononuclear iron by incubation with EDTA or with o-phenanthroline inhibits oxygenation; ferrous ion completely restores activity. No other metals are effective. Phthalate oxygenase is specific for phthalate or other closely related compounds. However, only phthalate is tightly coupled to NADH oxidation and O2 consumption with a stoichiometry of 1:1:1. Phthalate oxygenase is chemically competent to oxygenate phthalate when artificially supplied with reducing equivalents and O2. Phthalate oxygenase reductase is required, however, for efficient catalytic activity. The reductase is a monomeric 34-kDa flavo-iron-sulfur protein containing FMN and a plant-ferredoxin-type [2Fe-2S] center in a 1:1 ratio. Phthalate oxygenase reductase is specific for NADH but can pass electrons to a variety of acceptors, including: phthalate oxygenase, cytochrome c, ferricyanide, and dichlorophenolindophenol. This system is similar to other bacterial oxygenase systems involved in aromatic degradation including: benzoate dioxygenase, toluene dioxygenase, benzene dioxygenase, and 4-methoxybenzoate demethoxylase. However, phthalate oxygenase can be isolated in large quantities and is more stable than most other such systems.  相似文献   
109.
We identify the cyanogenic substrate for horseradish peroxidase (HRP) as a conjugated enamine and explore this unusual reaction using alpha-aminocinnamate (RH) as follows. 1) HRP catalyzes the oxidation of RH by O2 (and its peroxidation by H2O2 to form R-R) to produce, simultaneously, CN- and benzaldehyde cyanohydrin. 2) RH is transient and must be generated in situ. The properties of the cyanogenic reaction of HRP are independent of the method of preparation of RH (whether this be condensation of NH3 with phenylpyruvate, enzymatic hydrolysis of glycyldehydrophenylalanine, or oxidation of L-phenylalanine by L-amino acid oxidase). 3) The oxidation of RH is a free radical chain reaction initiated by HRP Compounds I and II (I (or II) + RH----R. + II (or HRP], propagated by RO2. (R. + O2----RO2., RO2. + RH----R. + RO2H), and terminated by recombination reactions such as 2R.----R2 and RO2.----R' + HO2. followed by R. + HO2.----RH + O2. KMnO4 and K3Fe(CN)6 can substitute for HRP. 4) The proximal precursor of CN- and cyanohydrin is postulated to be RO2H (phi-CH(-O2H)-CCO2-(= NH]. These results explain why cyanide is generated from the synergistic action of HRP and L-amino acid oxidase on aromatic L-amino acids and O2 and suggest that the requirement for a beta-aryl substituent on the enamine originates in the reaction of RH with HRP, or of R with O2, rather than the imine/enamine tautomerization of the L-amino acid oxidase product.  相似文献   
110.
Modification of calmodulin by protein carboxyl methyltransferase requires deamidation of one or more labile asparagine residues (Johnson, B.A., Freitag, N. E., and Aswad, D. W. (1985) J. Biol. Chem. 260, 10913-10916). We now show that deamidation results in the generation of two altered forms of calmodulin, designated A and B, which can be separated by electrophoresis under nondenaturing conditions. The A form is characterized by a larger apparent molecular radius, has only 10% the activity of native calmodulin when assayed for its ability to activate a Ca2+/calmodulin-dependent protein kinase from rat brain, and serves as an excellent substrate for the methyltransferase. The B form more closely resembles native calmodulin: it has an apparent molecular radius more like the native, exhibits about 40% the activity of native calmodulin, and is a relatively poor methyl acceptor. Evidence suggests that the A and B forms probably contain isoaspartate (A) and aspartate (B) in place of Asn-60 and/or Asn-97. Incubation of the A form with methyltransferase and S-adenosyl-L-methionine converts about half of the A form to an electrophoretic band indistinguishable from the B form. The activity of this partly converted calmodulin rises to 30-50% that of native calmodulin. These observations imply that the methyltransferase may have a biological role in restoring activity to proteins which contain abnormal isoaspartyl peptide bonds resulting from asparagine deamidation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号