首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464篇
  免费   60篇
  2022年   3篇
  2021年   4篇
  2019年   4篇
  2015年   5篇
  2014年   12篇
  2013年   9篇
  2012年   14篇
  2011年   18篇
  2010年   4篇
  2009年   6篇
  2008年   7篇
  2007年   26篇
  2006年   11篇
  2005年   19篇
  2004年   11篇
  2003年   22篇
  2002年   15篇
  2001年   10篇
  2000年   20篇
  1999年   12篇
  1998年   12篇
  1997年   9篇
  1996年   7篇
  1995年   13篇
  1994年   15篇
  1992年   18篇
  1991年   10篇
  1990年   10篇
  1989年   14篇
  1988年   10篇
  1987年   8篇
  1986年   10篇
  1985年   8篇
  1984年   6篇
  1983年   10篇
  1982年   4篇
  1981年   5篇
  1979年   6篇
  1978年   11篇
  1976年   8篇
  1975年   13篇
  1974年   7篇
  1973年   8篇
  1972年   10篇
  1971年   6篇
  1970年   9篇
  1969年   8篇
  1967年   3篇
  1966年   4篇
  1956年   3篇
排序方式: 共有524条查询结果,搜索用时 187 毫秒
51.
A direct comparison of the inhibitory effects of alpha, beta, and gamma interferons (IFNs) on replication of a hepatitis C virus subgenomic replicon in a hepatoma cell line revealed similarities in antiviral potency. However, alternate IFN-induced antiviral mechanisms were suggested following observations of striking differences between IFN-gamma and IFN-alpha/beta with respect to strength and durability of the antiviral response and the magnitude and pattern of IFN-mediated gene expression.  相似文献   
52.
53.
Two analytical separation techniques are being investigated for their potential in determining a wide range of endocrine disrupting chemicals (EDCs) in the environment. Capillary electrophoresis (CE) in the micellar mode in conjunction with a cyclodextrin (CD) modifier is shown to have potential for determination of alkylphenol breakdown products. Gas chromatography with mass spectrometric (GC-MS) detection is being utilised for validation of the CE method development and in addition as a separation technique to optimise preconcentration using solid-phase extraction. GC has demonstrated potential for the separation of 26 priority chemicals suspected as being endocrine disrupting compounds. The challenge of the method development process lies in the fact that these compounds are of differing polarities, size and charge and therefore are difficult to separate in a single run. Capillary electrophoresis in the CD-MEKC (micellar electrokinetic chromatography) mode is showing potential in this regard. Limits of determination are in the low mg/l range for CE and GC, however, using preconcentration it is possible to improve detection sensitivity with >80% recovery for some analytes and up to 100% recovery for most target species.  相似文献   
54.
Proliferation of fibroblasts contributes to the adventitial thickening observed during the development of hypoxia-induced pulmonary hypertension. However, whether all or only specific subpopulations of fibroblasts proliferate during this process is unknown. Because lung, skin, and gingiva contain multiple fibroblast subpopulations, we hypothesized that the pulmonary artery (PA) adventitia of neonatal calves is composed of multiple fibroblast subpopulations and that only selective subpopulations expand under chronic hypoxic conditions. Fibroblast subpopulations were isolated from PA adventitia of control calves using limited dilution cloning techniques. These subpopulations exhibited marked differences in morphology, actin expression, and serum-stimulated growth. Only select fibroblast subpopulations demonstrated the ability to proliferate in response to hypoxia. Fibroblast subpopulations were similarly isolated from calves exposed to hypoxia (14 days). With regard to morphology, actin expression, and serum-stimulated growth of subpopulations, there were no obvious differences in fibroblast subpopulations between the hypoxic and the control calves. However, the number of fibroblast subpopulations with about a twofold increase in hypoxia-induced DNA synthesis was significantly greater in the hypoxic calves (26%) compared with control calves (10%). We conclude that the bovine PA adventitia comprises numerous phenotypically and biochemically distinct fibroblast subpopulations and that select subpopulations expand in response to chronic hypoxia.  相似文献   
55.
In vascular smooth muscle cells (VSMCs), angiotensin II (AngII) induces transactivation of the EGF receptor (EGFR) which involves a metalloprotease that stimulates processing of heparin-binding EGF from its precursor. However, the identity and pharmacological sensitivity of the metalloprotease remain unclear. Here, we screened the effects of several metalloprotease inhibitors on AngII-induced EGFR transactivation in VSMCs. We found that an N-phenylsulfonyl-hydroxamic acid derivative [2R-[(4-biphenylsulfonyl)amino]-N-hydroxy-3-phenylpropinamide] (BiPS), previously known as matrix metalloprotease (MMP)-2/9 inhibitor, markedly inhibited AngII-induced EGFR transactivation, whereas the MMP-2 or -9 inhibition by other MMP inhibitors failed to block the transactivation. BiPS markedly inhibited AngII-induced ERK activation and protein synthesis without affecting AngII-induced intracellular Ca2+ elevation. VSMC migration induced by AngII was also inhibited not only by an EGFR inhibitor but also by BiPS. Thus, BiPS is a specific candidate to block AngII-induced EGFR transactivation and subsequent growth and migration of VSMCs, suggesting its potency to prevent vascular remodeling.  相似文献   
56.
To meet the increasing requirement for therapeutic antibodies to conduct clinical trials, an enhanced culture medium and fed-batch process was developed for GS-NS0 cell lines. This process was shown to produce high concentrations of monoclonal antibodies for several cell lines expressing different antibodies. Cells were adapted to growth in a glutamine- and serum-free medium containing bovine serum albumin (BSA), cholesterol, and transferrin. A number of amino acids were found to be depleted during cell culture. The concentrations of these amino acids were increased, and further cell culture analyses were performed. This process of cell growth and analysis was repeated over multiple cycles until no depletion was detected. This resulted in an amino acid supplement that was shown to be generic and enhanced antibody productivity up to 5-fold for the three cell lines tested. Transferrin was replaced using tropolone, a lipophilic iron chelator and ferric ammonium citrate. Cell growth was equivalent to that in transferrin-containing medium over the wide ranges tested. A concentrated feed solution, based on the amino acid supplement and the components of the serum- and protein-free supplements, was formulated. Addition of this feed in response to metabolic requirements resulted in a harvest titer a further 2-fold higher than the enhanced culture medium. Harvest antibody titers of up to 600 mg/L were achieved for three cell lines expressing different antibodies, representing an increase of 10-fold over the starting concentrations.  相似文献   
57.
Reactive oxygen species (ROS) are implicated in cardiovascular diseases. ROS, such as H2O2, act as second messengers to activate diverse signaling pathways. Although H2O2 activates several tyrosine kinases, including the epidermal growth factor (EGF) receptor, JAK2, and PYK2, in vascular smooth muscle cells (VSMCs), the intracellular mechanism by which ROS activate these tyrosine kinases remains unclear. Here, we identified two distinct signaling pathways required for receptor and nonreceptor tyrosine kinase activation by H2O2 involving a metalloprotease-dependent generation of heparin-binding EGF-like growth factor (HB-EGF) and protein kinase C (PKC)-delta activation, respectively. H2O2-induced EGF receptor tyrosine phosphorylation was inhibited by a metalloprotease inhibitor, whereas the inhibitor had no effect on H2O2-induced JAK2 tyrosine phosphorylation. HB-EGF neutralizing antibody inhibited H2O2-induced EGF receptor phosphorylation. In COS-7 cells expressing an HB-EGF construct tagged with alkaline phosphatase, H2O2 stimulates HB-EGF production through metalloprotease activation. By contrast, dominant negative PKC-delta transfection inhibited H2O2-induced JAK2 phosphorylation but not EGF receptor phosphorylation. Dominant negative PYK2 inhibited H2O2-induced JAK2 activation but not EGF receptor activation, whereas dominant negative PKC-delta inhibited PYK2 activation by H2O2. These data demonstrate the presence of distinct tyrosine kinase activation pathways (PKC-delta/PYK2/JAK2 and metalloprotease/HB-EGF/EGF receptor) utilized by H2O2 in VSMCs, thus providing unique therapeutic targets for cardiovascular diseases.  相似文献   
58.
Heparanase, a potential regulator of cell-matrix interactions   总被引:10,自引:0,他引:10  
  相似文献   
59.
Vascular repair in response to injury or stress (often referred to as remodeling) is a common complication of many cardiovascular abnormalities including pulmonary hypertension, systemic hypertension, atherosclerosis, vein graft remodeling and restenosis following balloon dilatation of the coronary artery. It is not surprising that repair and remodeling occurs frequently in the vasculature in that exposure of blood, vessels to either excessive hemodynamic stress (e.g. hypertension), noxious blood borne agents (e.g. atherogenic lipids), locally released cytokines, or unusual environmental conditions (e.g. hypoxia), requires readily available mechanisms to counteract these adverse stimuli and to preserve structure and function of the vessel wall. The responses, which were presumably evolutionarily developed to repair an injured tissue, often escape self-limiting control and can result, in the case of blood vessels, in lumen narrowing and obstruction to blood flow. Each cell type (i. e. endothelial cells, smooth muscle cells, and fibroblasts) in the vascular wall plays a specific role in the response to injury. However, while the roles of the endothelial cells and smooth muscle cells (SMC) in vascular remodeling have been extensively studied, relatively little attention has been given to the adventitial fibroblasts. Perhaps this is because the fibroblast is a relatively ill-defined cell which, at least compared to the SMC, exhibits few specific cellular markers. Importantly though, it has been well demonstrated that fibroblasts possess the capacity to express several functions such as migration, rapid proliferation, synthesis of connective tissue components, contraction and cytokine production in response to activation or stimulation. The myriad of responses exhibited by the fibroblasts, especially in response to stimulation, suggest that these cells could play a pivotal role in the repair of injury. This fact has been well documented in the setting of wound healing where a hypoxic environment has been demonstrated to be critical in the cellular responses. As such it is not surprising that fibroblasts may play an important role in the vascular response to hypoxia and/or injury. This paper is intended to provide a brief review of the changes that occur in the adventitial fibroblasts in response to vascular stress (especially hypoxia) and the role the activated fibroblasts might play in hypoxia-mediated pulmonary vascular disease.  相似文献   
60.
The 2 S seed storage protein, sunflower albumin 8, contains an unusually high proportion of hydrophobic residues including 16 methionines in a mature protein of 103 amino acids. A structural model, based on the known structure of a related protein, has been constructed as a four-helix bundle cross-linked by four disulphide bonds. This model structure is consistent with data from circular dichroism and nuclear magnetic resonance experiments. Analysis of the model's surface shows the presence of a large hydrophobic face that may be responsible for the highly stable emulsions this protein is known to form with oil/water mixtures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号