首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   39篇
  351篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   7篇
  2019年   10篇
  2018年   16篇
  2017年   8篇
  2016年   10篇
  2015年   9篇
  2014年   14篇
  2013年   30篇
  2012年   23篇
  2011年   29篇
  2010年   18篇
  2009年   10篇
  2008年   16篇
  2007年   17篇
  2006年   18篇
  2005年   12篇
  2004年   15篇
  2003年   14篇
  2002年   7篇
  2001年   2篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   6篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1976年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1961年   1篇
  1959年   1篇
  1928年   1篇
排序方式: 共有351条查询结果,搜索用时 15 毫秒
81.
82.
Histone methylation plays an important role in chromatin dynamics and gene expression. Methylation of histone H3-lysine 27 by the EZH2 complex has been linked to the silencing of homeotic genes and the inactivation of the X chromosome. Here we report a characterization of the substrate preferences of the enzyme complex using a reconstituted chromatin and enzyme system. We found that the linker histone H1, when incorporated into nucleosomes, stimulates the enzymatic activity toward histone H3. This stimulatory activity may be explained by protein-protein interactions between H1 and components of the EZH2 complex. In addition, we found that the EZH2 complex exhibits a dramatic preference for dinucleosomes when compared with mononucleosomes and that the stimulation of H3 methylation by H1 requires dinucleosomes or oligonucleosome substrates. Furthermore, in contrast with a recent study suggesting that Embryonic Ectoderm Development EED isoforms may affect substrate specificity, we found that EZH2 complexes reconstituted with different EED isoforms exhibit similar substrate preference and specificity. Our work supports the hypothesis that linker histone H1 and chromatin structure are important factors in determining the substrate preference of the EZH2 histone methyltransferase complex.  相似文献   
83.
The major estrogen metabolite 2-methoxyestradiol (2ME) has been shown to target tumor cells without severe side effects and is currently being evaluated in clinical trials for several types of cancer. Despite its promise for use in clinical setting, the mechanism(s) by which 2ME exerts its anti-tumor activity is not clearly defined at this time. Employing organic chemistry tools, we synthesized 2ME analogs with which 2ME affinity column was prepared, enabling us to detect a protein that selectively interacts with 2ME. This 2ME analog will be useful as a probe to identify the biological target(s) of 2ME and study their functions in tumor cells.  相似文献   
84.
For homologous protein chains composed of two domains, we have determined the extent to which they conserve (1) their interdomain geometry and (2) the molecular structure of the domain interface. This work was carried out on 128 unique two-domain architectures. Of the 128, we find 75 conserve their interdomain geometry and the structure of their domain interface; 5 conserve their interdomain geometry but not the structure of their interface; and 48 have variable geometries and divergent interface structure. We describe how different types of interface changes or the absence of an interface is responsible for these differences in geometry. Variable interdomain geometries can be found in homologous structures with high sequence identities (70%).  相似文献   
85.
Potent and efficacious inhibitors of the hedgehog pathway for the treatment of cancer have been prepared using the 2-pyridyl biphenyl amide scaffold common to the clinical lead GDC-0449. Analogs with polar groups in the para-position of the aryl amide ring optimized potency, had minimal CYP inhibition, and possessed good exposure in rats. Compounds 9d and 14f potently inhibited hedgehog signaling as measured by Gli1 mRNA and were found to be equivalent or more potent than GDC-0449, respectively, when studied in a Ptch+/? medulloblastoma allograft model, that is, highly dependent on hedgehog signaling.  相似文献   
86.
Our visual experience is initiated when the visual pigment in our retinal photoreceptors absorbs photons of light energy and initiates a cascade of intracellular events that lead to closure of cyclic-nucleotide-gated channels in the cell membrane. The resulting change in membrane potential leads in turn to reductions in the amount of neurotransmitter release from both rod and cone synaptic terminals. To measure how the light-evoked change in photoreceptor membrane potential leads to downstream activity in the retina, scientists have made electrophysiological recordings from retinal slice preparations for decades1,2. In the past these slices have been cut manually with a razor blade on retinal tissue that is attached to filter paper; in recent years another method of slicing has been developed whereby retinal tissue is embedded in low gelling temperature agar and sliced in cool solution with a vibrating microtome3,4. This preparation produces retinal slices with less surface damage and very robust light-evoked responses. Here we document how this procedure can be done under infrared light to avoid bleaching the visual pigment.Download video file.(57M, mov)  相似文献   
87.
Gene therapy is expected to lead to powerful new approaches for curing many diseases, a potential that is currently explored in worldwide clinical trials. Nonviral DNA delivery systems are desirable to overcome the inherent problems of viral vectors, but their current efficiency requires improvement and the understanding of their mechanism of action is incomplete. We have synthesized new multivalent cationic lipids with highly charged dendritic headgroups to probe the structure-transfection efficiency relationships of cationic liposome (CL)-DNA complexes, a prevalent nonviral vector. The lipid headgroups are constructed from ornithine cores and ornithine or carboxyspermine endgroups. The dendritic lipids were prepared on a gram scale, using a synthetic scheme that permits facile variation of the lipid building blocks headgroup, spacer, and hydrophobic moiety. They carry four to sixteen positive charges in their headgroups. Complexes of DNA with mixtures of the dendritic lipids and neutral 1,2-dioleoyl-sn-glycero phosphatidylcholine (DOPC) exhibit novel structures at high contents of the highly charged lipids, while the well-known lamellar phase is formed at high contents of DOPC. DNA complexes of the new dendritic lipids efficiently transfect mammalian cells in culture without cytotoxicity and, in contrast to lamellar complexes, maintain high transfection efficiency over a broad range of composition.  相似文献   
88.
The G2019S mutation in the LRRK2 gene, the most common known cause of Parkinson's disease (PD), will soon be widely available as a molecular clinical test for PD. The objective of this study was to assess performance characteristics of G2019S as a clinical test for PD in the setting of typical movement disorder clinics in the United States. Subjects included 1,518 sequentially recruited PD patients from seven movement disorder clinics in the United States, and 1,733 unaffected subjects. All 3,251 subjects were genotyped for the G2019S mutation using a TaqMan assay, and mutations were verified by direct sequencing. Test validity estimates were calculated using standard methods. A total of 20/1518 patients and 1/1733 controls carried the G2019S mutation. Specificity was 99.9% (95% CI, 99.6-100%), sensitivity was 1.3% (0.8-2.1%), and the positive likelihood ratio was 22.8. A positive family history of PD increased the positive likelihood ratio to 82.5. Information on gender, age at disease onset, or age at testing did not improve test performance. The gene test was highly accurate in classifying mutation carriers as PD, but it performed poorly in predicting the phenotype of non-mutation carriers. A G2019S molecular test for PD would be highly specific, technically simple, and inexpensive. Test interpretation is straightforward when used for diagnosis of symptomatic individuals, but is more complex for risk assessment and predictive testing in asymptomatic individuals. Test results can have psychological, social, and economical ramifications; thus, proper counseling is essential.  相似文献   
89.
The interaction between n-octyl-beta-D-glucopyranoside (octyl glucoside) and bovine liver glutamate dehydrogenase (GDH) was studied using techniques including equilibrium dialysis, UV-spectrophotometry, circular dichroism (CD), fluorescence energy transfer and extrinsic spectrofluorometry in 50 mM sodium phosphate buffer solution (pH 7.6). The equilibrium dialysis experiment showed a higher binding of octyl glucoside to GDH that induces up to 80% enzyme inhibition in 20 mM octyl glucoside solution. The CD study indicated that GDH retains its secondary structure in the presence of octyl glucoside, but loses a degree of its tertiary structure by acquiring a more extended tertiary structure. Measurement of the binding of a hydrophobic fluorescent probe, 1-anilino-naphthalene-8-sulfonate (ANS), to GDH revealed that the binding of ANS to GDH is increased in the presence of octyl glucoside, a finding that may be interpreted in terms of the increment of surface hydrophobic patch(es) of GDH because of its binding to octyl glucoside. Fluorescence energy transfer studies also showed more binding of the reduced coenzyme (NADH) to GDH and the Lineweaver-Burk plots (with respect to NADH) indicate the existence of substrate inhibition in the presence of octyl glucoside. These observations are aimed at explaining the formation of the molten globule-like structure of GDH, which is induced by a non-ionic detergent such as octyl glucoside.  相似文献   
90.
Numerical and Monte Carlo simulations of horseradish peroxidase-catalyzed phenolic polymerizations have been performed. Kinetic constants for the simulations were fit to data from the oxidation and polymerization of bisphenol A. Simulations of peroxidase-catalyzed phenolic polymerization were run as a function of enzyme concentration and radical transfer and radical coupling rate constants. Predictions were performed with respect to conversion vs. time and number average molecular weight and polydispersity vs. conversion. It is shown that the enzymatic polymerization of phenols can be optimized with respect to high molecular weights by employing low enzyme concentrations and phenols with low radical coupling rate constants coupled with relatively high radical transfer rate constants. Such phenols may be identified by using linear free energy relationships that relate radical reactivity to electron donating/withdrawing potential of the phenolic substituent. (c) 1993 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号