首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   39篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   7篇
  2019年   10篇
  2018年   16篇
  2017年   8篇
  2016年   10篇
  2015年   9篇
  2014年   14篇
  2013年   30篇
  2012年   23篇
  2011年   29篇
  2010年   18篇
  2009年   10篇
  2008年   16篇
  2007年   17篇
  2006年   18篇
  2005年   12篇
  2004年   15篇
  2003年   14篇
  2002年   7篇
  2001年   2篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   6篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1976年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1961年   1篇
  1959年   1篇
  1928年   1篇
排序方式: 共有351条查询结果,搜索用时 812 毫秒
211.
Bone tissue engineering using human bone marrow mesenchymal stem cells (HBMCs) and biocompatible materials provides an attractive approach to regenerate bone tissue to meet the major clinical need. The aim of this study was to examine the effects of novel porous biodegradable composite materials consisting of a bioactive phase (45S5 Bioglass, 0, 5, and 40 wt%) incorporated within a biodegradable poly(dl-lactic acid) matrix, on HBMCs growth. Cell adhesion, spreading, and viability was examined using Cell Tracker Green/Ethidium Homodimer-1. Bone formation was assessed using scaffolds seeded with stro-1 positive HBMCs in nude mice. In vitro biochemistry indicated that with minimal scaffold pre-treatment osteoblast activity falls with increasing Bioglass content. However, 24h scaffold pre-treatment with serum resulted in a significant increase in alkaline phosphatase specific activity in 5 wt% Bioglass composites relative to the 0 and 40 wt% Bioglass groups. In vivo studies indicate significant new bone formation throughout all the scaffolds, as evidenced by immunohistochemistry.  相似文献   
212.
We have investigated mechanisms that recruit the translesion synthesis (TLS) DNA polymerase Polkappa to stalled replication forks. The DNA polymerase processivity factor PCNA is monoubiquitinated and interacts with Polkappa in cells treated with the bulky adduct-forming genotoxin benzo[a]pyrene dihydrodiol epoxide (BPDE). A monoubiquitination-defective mutant form of PCNA fails to interact with Polkappa. Small interfering RNA-mediated downregulation of the E3 ligase Rad18 inhibits BPDE-induced PCNA ubiquitination and association between PCNA and Polkappa. Conversely, overexpressed Rad18 induces PCNA ubiquitination and association between PCNA and Polkappa in a DNA damage-independent manner. Therefore, association of Polkappa with PCNA is regulated by Rad18-mediated PCNA ubiquitination. Cells from Rad18(-/-) transgenic mice show defective recovery from BPDE-induced S-phase checkpoints. In Rad18(-/-) cells, BPDE induces elevated and persistent activation of checkpoint kinases, indicating persistently stalled forks due to defective TLS. Rad18-deficient cells show reduced viability after BPDE challenge compared with wild-type cells (but survival after hydroxyurea or ionizing radiation treatment is unaffected by Rad18 deficiency). Inhibition of RPA/ATR/Chk1-mediated S-phase checkpoint signaling partially inhibited BPDE-induced PCNA ubiquitination and prevented interactions between PCNA and Polkappa. Taken together, our results indicate that ATR/Chk1 signaling is required for Rad18-mediated PCNA monoubiquitination. Recruitment of Polkappa to ubiquitinated PCNA enables lesion bypass and eliminates stalled forks, thereby attenuating the S-phase checkpoint.  相似文献   
213.
The enzymatic cleavage of the nicotinamide-glycosidic bond on nicotinamide adenine dinucleotide (NAD(+)) has been proposed to go through an oxocarbenium ion-like transition state. Because of the instability of the ionic intermediate, there has been no structural report on such a transient reactive species. Human CD38 is an ectoenzyme that can use NAD(+) to synthesize two calcium-mobilizing molecules. By using NAD(+) and a surrogate substrate, NGD(+), we captured and determined crystal structures of the enzyme complexed with an intermediate, a substrate, and a product along the reaction pathway. Our results showed that the intermediate is stabilized by polar interactions with the catalytic residue Glu(226) rather than by a covalent linkage. The polar interactions between Glu(226) and the substrate 2',3'-OH groups are essential for initiating catalysis. Ser(193) was demonstrated to have a regulative role during catalysis and is likely to be involved in intermediate stabilization. In addition, a product inhibition effect by ADP-ribose (through the reorientation of the product) or GDP-ribose (through the formation of a covalently linked GDP-ribose dimer) was observed. These structural data provide insights into the understanding of multiple catalysis and clues for drug design.  相似文献   
214.
Regulation of global chromatin acetylation is important for chromatin remodeling. A small family of Jade proteins includes Jade-1L, Jade-2, and Jade-3, each bearing two mid-molecule tandem plant homology domain (PHD) zinc fingers. We previously demonstrated that the short isoform of Jade-1L protein, Jade-1, is associated with endogenous histone acetyltransferase (HAT) activity. It has been found that Jade-1L/2/3 proteins co-purify with a novel HAT complex, consisting of HBO1, ING4/5, and Eaf6. We investigated a role for Jade-1/1L in the HBO1 complex. When overexpressed individually, neither Jade-1/1L nor HBO1 affected histone acetylation. However, co-expression of Jade-1/1L and HBO1 increased acetylation of the bulk of endogenous histone H4 in epithelial cells in a synergistic manner, suggesting that Jade1/1L positively regulates HBO1 HAT activity. Conversely, small interfering RNA-mediated depletion of endogenous Jade resulted in reduced levels of H4 acetylation. Moreover, HBO1-mediated H4 acetylation activity was enhanced severalfold by the presence of Jade-1/1L in vitro. The removal of PHD fingers affected neither binding nor mutual Jade-1-HBO1 stabilization but completely abrogated the synergistic Jade-1/1L- and HBO1-mediated histone H4 acetylation in live cells and in vitro with reconstituted oligonucleosome substrates. Therefore, PHDs are necessary for Jade-1/1L-induced acetylation of nucleosomal histones by HBO1. In contrast to Jade-1/1L, the PHD zinc finger protein ING4/5 failed to synergize with HBO1 to promote histone acetylation. The physical interaction of ING4/5 with HBO1 occurred in the presence of Jade-1L or Jade-3 but not with the Jade-1 short isoform. In summary, this study demonstrates that Jade-1/1L are crucial co-factors for HBO1-mediated histone H4 acetylation.  相似文献   
215.
Many proteins involved in DNA replication and repair undergo post-translational modifications such as phosphorylation and ubiquitylation. Proliferating cell nuclear antigen (PCNA; a homotrimeric protein that encircles double-stranded DNA to function as a sliding clamp for DNA polymerases) is monoubiquitylated by the RAD6-RAD18 complex and further polyubiquitylated by the RAD5-MMS2-UBC13 complex in response to various DNA-damaging agents. PCNA mono- and polyubiquitylation activate an error-prone translesion synthesis pathway and an error-free pathway of damage avoidance, respectively. Here we show that replication factor C (RFC; a heteropentameric protein complex that loads PCNA onto DNA) was also ubiquitylated in a RAD18-dependent manner in cells treated with alkylating agents or H(2)O(2). A mutant form of RFC2 with a D228A substitution (corresponding to a yeast Rfc4 mutation that reduces an interaction with replication protein A (RPA), a single-stranded DNA-binding protein) was heavily ubiquitylated in cells even in the absence of DNA damage. Furthermore RFC2 was ubiquitylated by the RAD6-RAD18 complex in vitro, and its modification was inhibited in the presence of RPA. The inhibitory effect of RPA on RFC2 ubiquitylation was relatively specific because RAD6-RAD18-mediated ubiquitylation of PCNA was RPA-insensitive. Our findings suggest that RPA plays a regulatory role in DNA damage responses via repression of RFC2 ubiquitylation in human cells.  相似文献   
216.
217.
218.
Summary

An unusually cold spell during the winter of 1987 caused a drop in water temperature at Lake St Lucia. This coupled with typical estuarine salinities in the lake resulted in a fish kill. The kill was one of the largest recorded in a South African estuarine environment and involved an estimated 250,000 fish comprising at least 21 species. Most fish that died belonged to small species. Densities of dead fish recorded along the lake's shoreline ranged from 0.1 to 16.6 fish per metre. It is concluded that the combination of low water temperature and near marine salinities was the major cause of the 1987 fish kill at Lake St Lucia.  相似文献   
219.
Positive modulators at the benzodiazepine site of α2- and α3-containing GABA(A) receptors are believed to be anxiolytic. Through oocyte voltage clamp studies, we have discovered two series of compounds that are positive modulators at α2-/α3-containing GABA(A) receptors and that show no functional activity at α1-containing GABA(A) receptors. We report studies to improve this functional selectivity and ultimately deliver clinical candidates. The functional SAR of cinnolines and quinolines that are positive allosteric modulators of the α2- and α3-containing GABA(A) receptors, while simultaneously neutral antagonists at α1-containing GABA(A) receptors, is described. Such functionally selective modulators of GABA(A) receptors are expected to be useful in the treatment of anxiety and other psychiatric illnesses.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号