首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   42篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2018年   1篇
  2017年   1篇
  2016年   10篇
  2015年   6篇
  2014年   7篇
  2013年   13篇
  2012年   14篇
  2011年   22篇
  2010年   11篇
  2009年   13篇
  2008年   19篇
  2007年   17篇
  2006年   13篇
  2005年   17篇
  2004年   13篇
  2003年   11篇
  2002年   13篇
  2001年   11篇
  2000年   7篇
  1999年   9篇
  1998年   6篇
  1997年   5篇
  1996年   10篇
  1995年   2篇
  1994年   6篇
  1993年   4篇
  1992年   10篇
  1991年   7篇
  1990年   9篇
  1989年   5篇
  1988年   2篇
  1987年   7篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1980年   2篇
  1977年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有331条查询结果,搜索用时 15 毫秒
21.
Thaxtomin A is the main phytotoxin produced by Streptomyces scabies, a causal agent of potato scab. Thaxtomin A is a yellow compound composed of 4-nitroindol-3-yl-containing 2,5-dioxopiperazine. A collection of nonpathogenic streptomycetes isolated from potato tubers and microorganisms recovered from a thaxtomin A solution were examined for the ability to grow in the presence of thaxtomin A as a sole carbon or nitrogen source. Three bacterial isolates and two fungal isolates grew in thaxtomin A-containing media. Growth of these organisms resulted in decreases in the optical densities at 400 nm of culture supernatants and in 10% reductions in the thaxtomin A concentration. The fungal isolates were identified as a Penicillium sp. isolate and a Trichoderma sp. isolate. One bacterial isolate was associated with the species Ralstonia pickettii, and the two other bacterial isolates were identified as Streptomyces sp. strains. The sequences of the 16S rRNA genes were determined in order to compare thaxtomin A-utilizing actinomycetes to the pathogenic organism S. scabies and other Streptomyces species. The nucleotide sequences of the γ variable regions of the 16S ribosomal DNA of both thaxtomin A-utilizing actinomycetes were identical to the sequence of Streptomyces mirabilis ATCC 27447. When inoculated onto potato tubers, the three thaxtomin A-utilizing bacteria protected growing plants against common scab, but the fungal isolates did not have any protective effect.  相似文献   
22.
Formation of the cardiac valves is an essential component of cardiovascular development. Consistent with the role of the bone morphogenetic protein (BMP) signaling pathway in cardiac valve formation, embryos that are deficient for the BMP regulator BMPER (BMP-binding endothelial regulator) display the cardiac valve anomaly mitral valve prolapse. However, how BMPER deficiency leads to this defect is unknown. Based on its expression pattern in the developing cardiac cushions, we hypothesized that BMPER regulates BMP2-mediated signaling, leading to fine-tuned epithelial-mesenchymal transition (EMT) and extracellular matrix deposition. In the BMPER-/- embryo, EMT is dysregulated in the atrioventricular and outflow tract cushions compared with their wild-type counterparts, as indicated by a significant increase of Sox9-positive cells during cushion formation. However, proliferation is not impaired in the developing BMPER-/- valves. In vitro data show that BMPER directly binds BMP2. In cultured endothelial cells, BMPER blocks BMP2-induced Smad activation in a dose-dependent manner. In addition, BMP2 increases the Sox9 protein level, and this increase is inhibited by co-treatment with BMPER. Consistently, in the BMPER-/- embryos, semi-quantitative analysis of Smad activation shows that the canonical BMP pathway is significantly more active in the atrioventricular cushions during EMT. These results indicate that BMPER negatively regulates BMP-induced Smad and Sox9 activity during valve development. Together, these results identify BMPER as a regulator of BMP2-induced cardiac valve development and will contribute to our understanding of valvular defects.  相似文献   
23.
Two fundamental sign errors were found in a computer code used for studying the oxygen minimum zone (OMZ) and hypoxia in the Estuary and Gulf of St. Lawrence. These errors invalidate the conclusions drawn from the model, and call into question a proposed mechanism for generating OMZ that challenges classical understanding. The study in question is being cited frequently, leading the discipline in the wrong direction.  相似文献   
24.
The single radial immunodiffusion (SRID) method currently used to determine the hemagglutinin (HA) content of the inactivated influenza vaccines depends on the availability of reference HA antigen and corresponding anti-serum, updated and provided annually by World Health Organization (WHO) collaborative centers. Particularly early in a pandemic outbreak, reference reagents could be the bottleneck in vaccine development and release. Therefore, other reliable tests capable of quantifying HA content could substantially shorten the time needed for vaccine formulation. Here electrophoretic separation of deglycosylated samples in conjunction with densitometry was used to quantify HA contents of H1N1 vaccine at multiple manufacturing sites. We found the overall consistency between the alternative method and traditional SRID was 88–122% in seven lots of vaccine bulks from four subtypes (types) of influenza vaccine, confirming its suitability to quantify HA content. Moreover, we used the alternative method to prepare a national HA antigen reference in China for quality control of 2009 pandemic influenza A (H1N1) vaccines prior to the arrival of the WHO SRID reference standards, subsequently confirming good agreement between both methods. The alternative method for vaccine quantification enabled the Chinese health authority to approve H1N1 vaccine 1 month earlier than otherwise possible.  相似文献   
25.
Intrinsic protein fluorescence may interfere with the visualization of proteins after SDS-polyacrylamide electrophoresis. In an attempt to analyze tear glycoproteins in gels, we ran tear samples and stained the proteins with a glycoprotein-specific fluorescent dye. The fluorescence detected was not limited to glycoproteins. There was strong intrinsic fluorescence of proteins normally found in tears after soaking the gels in 40% methanol plus 1-10% acetic acid and, to a lesser extent, in methanol or acetic acid alone. Nanograms of proteins gave visible native fluorescence and interfere with extrinsic fluorescent dye detection. Poly-L-lysine, which does not contain intrinsically fluorescent amino acids, did not fluoresce.  相似文献   
26.
27.
Relative contributions of folding kinetics versus protein quality control (QC) activity in the partitioning of non-native proteins between life and death are not clear. Cystic fibrosis transmembrane conductance regulator (CFTR) biogenesis serves as an excellent model to study this question because folding of nascent CFTR is inefficient and deletion of F508 causes accumulation of CFTRΔF508 in a kinetically trapped, but foldable state. Herein, a novel endoplasmic reticulum (ER)-associated Hsp40, DNAJB12 (JB12) is demonstrated to play a role in control of CFTR folding efficiency. JB12 cooperates with cytosolic Hsc70 and the ubiquitin ligase RMA1 to target CFTR and CFTRΔF508 for degradation. Modest elevation of JB12 decreased nascent CFTR and CFTRΔF508 accumulation while increasing association of Hsc70 with ER forms of CFTR and the RMA1 E3 complex. Depletion of JB12 increased CFTR folding efficiency up to threefold and permitted a pool of CFTRΔF508 to fold and escape the ER. Introduction of the V510D misfolding suppressor mutation into CFTRΔF508 modestly increased folding efficiency, whereas combined inactivation of JB12 and suppression of intrinsic folding defects permitted CFTRΔF508 to fold at 50% of wild-type efficiency. Therapeutic correction of CFTRΔF508 misfolding in cystic fibrosis patients may require repair of defective folding kinetics and suppression of ER QC factors, such as JB12.  相似文献   
28.
Endocrine-disrupting chemicals are exogenous compounds that mimic or inhibit the action of estrogens or other hormones. Nonylphenol, an environmental contaminant distributed along the St. Lawrence River, has been reported to act as a weak estrogen. Previous studies from our laboratory have shown that rats that were fed fish taken from nonylphenol contaminated sites have altered spermatogenesis and decreased sperm count. The mechanism responsible for this effect is unknown. Gap junctional intercellular communication (GJIC) in the testis is critical for coordinating spermatogenesis. The objectives of the study were to determine the effects of nonylphenol on GJIC and connexin 43 (Cx43) in a murine Sertoli cell line, TM4. Cells were exposed for 24 h to different concentrations (1 to 50 microM) of either nonylphenol or 17beta-estradiol. GJIC was determined using a microinjection approach in which Lucifer yellow was injected directly into a single cell, and GJIC was assessed 3 min postinjection. Nonylphenol exposure decreased GJIC between adjacent cells by almost 80% relative to controls. A significant concentration-dependent reduction in GJIC was observed at nonylphenol concentrations between 1 and 50 microM. Cx43 immunofluorescent staining was reduced at both 10 and 50 microM doses of nonylphenol. Cx43 phosphorylation, as determined by Western blot analysis, was reduced at both 10 and 50 microM concentrations, which may explain, at least in part, the inhibition of GJIC. In contrast, no effect on GJIC or Cx43 protein was observed in cells exposed to 17beta-estradiol at these concentrations. Cx43 has been reported to be phosphorylated via the p38-mitogen-activated protein kinase (MAPK) pathway. P38-MAPK activity was assessed in both control and nonylphenol-exposed cells. A dose-dependent decrease in p38-MAPK activity was observed in nonylphenol-exposed Sertoli cells. Protein kinase C activity was also measured and was not influenced by nonylphenol. These results suggest that nonylphenol inhibits GJIC between Sertoli cells and that this is modulated via nonestrogenic pathways.  相似文献   
29.
CFTRDeltaF508 exhibits a correctable protein-folding defect that leads to its misfolding and premature degradation, which is the cause of cystic fibrosis (CF). Herein we report on the characterization of the CFTRDeltaF508 biogenic intermediate that is selected for proteasomal degradation and identification of cellular components that polyubiquitinate CFTRDeltaF508. Nonubiquitinated CFTRDeltaF508 accumulates in a kinetically trapped, but folding competent conformation, that is maintained in a soluble state by cytosolic Hsc70. Ubiquitination of Hsc70-bound CFTRDeltaF508 requires CHIP, a U box containing cytosolic cochaperone. CHIP is demonstrated to function as a scaffold that nucleates the formation of a multisubunit E3 ubiquitin ligase whose reconstituted activity toward CFTR is dependent upon Hdj2, Hsc70, and the E2 UbcH5a. Inactivation of the Hsc70-CHIP E3 leads CFTRDeltaF508 to accumulate in a nonaggregated state, which upon lowering of cell growth temperatures, can fold and reach the cell surface. Inhibition of CFTRDeltaF508 ubiquitination can increase its cell surface expression and may provide an approach to treat CF.  相似文献   
30.
BACKGROUND: Molecular chaperone Hsp40 can bind non-native polypeptide and facilitate Hsp70 in protein refolding. How Hsp40 and other chaperones distinguish between the folded and unfolded states of proteins to bind nonnative polypeptides is a fundamental issue. RESULTS: To investigate this mechanism, we determined the crystal structure of the peptide-binding fragment of Sis1, an essential member of the Hsp40 family from Saccharomyces cerevisiae. The 2.7 A structure reveals that Sis1 forms a homodimer in the crystal by a crystallographic twofold axis. Sis1 monomers are elongated and consist of two domains with similar folds. Sis1 dimerizes through a short C-terminal stretch. The Sis1 dimer has a U-shaped architecture and a large cleft is formed between the two elongated monomers. Domain I in each monomer contains a hydrophobic depression that might be involved in binding the sidechains of hydrophobic amino acids. CONCLUSIONS: Sis1 (1-337), which lacks the dimerization motif, exhibited severe defects in chaperone activity, but could regulate Hsp70 ATPase activity. Thus, dimer formation is critical for Sis1 chaperone function. We propose that the Sis1 cleft functions as a docking site for the Hsp70 peptide-binding domain and that Sis1-Hsp70 interaction serves to facilitate the efficient transfer of peptides from Sis1 to Hsp70.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号