首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   42篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2018年   1篇
  2017年   1篇
  2016年   10篇
  2015年   6篇
  2014年   7篇
  2013年   13篇
  2012年   14篇
  2011年   22篇
  2010年   11篇
  2009年   13篇
  2008年   19篇
  2007年   17篇
  2006年   13篇
  2005年   17篇
  2004年   13篇
  2003年   11篇
  2002年   13篇
  2001年   11篇
  2000年   7篇
  1999年   9篇
  1998年   6篇
  1997年   5篇
  1996年   10篇
  1995年   2篇
  1994年   6篇
  1993年   4篇
  1992年   10篇
  1991年   7篇
  1990年   9篇
  1989年   5篇
  1988年   2篇
  1987年   7篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1980年   2篇
  1977年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有331条查询结果,搜索用时 15 毫秒
101.
Protein quality control: U-box-containing E3 ubiquitin ligases join the fold   总被引:13,自引:0,他引:13  
Molecular chaperones act with folding co-chaperones to suppress protein aggregation and refold stress damaged proteins. However, it is not clear how slowly folding or misfolded polypeptides are targeted for proteasomal degradation. Generally, selection of proteins for degradation is mediated by E3 ubiquitin ligases of the mechanistically distinct HECT and RING domain sub-types. Recent studies suggest that the U-box protein family represents a third class of E3 enzymes. CHIP, a U-box-containing protein, is a degradatory co-chaperone of heat-shock protein 70 (Hsp70) and Hsp90 that facilitates the polyubiquitination of chaperone substrates. These data indicate a model for protein quality control in which the interaction of Hsp70 and Hsp90 with co-chaperones that have either folding or degradatory activity helps to determine the fate of non-native cellular proteins.  相似文献   
102.
Bone marrow stromal cell cultures contain multipotent cells that may have therapeutic utility for tissue restoration; however, the identity of the cell that maintains this function remains poorly characterized. We have utilized a unique model of murine bone marrow stroma in combination with liquid chromatography mass spectrometry to compare the nuclear, cytoplasmic and membrane associated proteomes of multipotent (MSC) (CD105+) and non-multipotent (CD105-) stromal cells. Among the 25 most reliably identified proteins, 10 were verified by both real-time PCR and Western Blot to be highly enriched, in CD105+ cells and were members of distinct biological pathways and functional networks. Five of these proteins were also identified as potentially expressed in human MSC derived from both standard and serum free human stromal cultures. The quantitative amount of each protein identified in human stromal cells was only minimally affected by media conditions but varied highly between bone marrow donors. This study provides further evidence of heterogeneity among cultured bone marrow stromal cells and identifies potential candidate proteins that may prove useful for identifying and quantifying both murine and human MSC in vitro.  相似文献   
103.
104.
To prevent the accumulation of misfolded and aggregated proteins, the cell has developed a complex network of cellular quality control (QC) systems to recognize misfolded proteins and facilitate their refolding or degradation. The cell faces numerous obstacles when performing quality control on transmembrane proteins. Transmembrane proteins have domains on both sides of a membrane and QC systems in distinct compartments must coordinate to monitor the folding status of the protein. Additionally, transmembrane domains can have very complex organization and QC systems must be able to monitor the assembly of transmembrane domains in the membrane. In this review, we will discuss the QC systems involved in repair and degradation of misfolded transmembrane proteins. Also, we will elaborate on the factors that recognize folding defects of transmembrane domains and what happens when misfolded transmembrane proteins escape QC and aggregate. This article is part of a Special Issue entitled: Protein Folding in Membranes.  相似文献   
105.
106.
In this study we describe the sociodemographic characteristics of people participating in a clinical trial on the safety and immunogenicity of a H5N1 influenza vaccine and we identify the main motivations for joining it.  相似文献   
107.
This study examined the nitrogen (N) dynamics of a black spruce (Picea mariana (Mill.) BSP)-dominated chronosequence in Manitoba, Canada. The seven sites studied each contained separate well- and poorly drained stands, originated from stand-killing wildfires, and were between 3 and 151 years old. Our goals were to (i) measure total N concentration ([N]) of all biomass components and major soil horizons; (ii) compare N content and select vegetation N cycle processes among the stands; and (iii) examine relationships between ecosystem C and N cycling for these stands. Vegetation [N] varied significantly by tissue type, species, soil drainage, and stand age; woody debris [N] increased with decay state and decreased with debris size. Soil [N] declined with horizon depth but did not vary with stand age. Total (live + dead) biomass N content ranged from 18.4 to 99.7 g N m−2 in the well-drained stands and 37.8–154.6 g N m−2 in the poorly drained stands. Mean soil N content (380.6 g N m−2) was unaffected by stand age. Annual vegetation N requirement (5.9 and 8.4 g N m−2 yr−1 in the middle-aged well- and poorly drained stands, respectively) was dominated by trees and fine roots in the well-drained stands, and bryophytes in the poorly drained stands. Fraction N retranslocated was significantly higher in deciduous than evergreen tree species, and in older than younger stands. Nitrogen use efficiency (NUE) was significantly lower in bryophytes than in trees, and in deciduous than in evergreen trees. Tree NUE increased with stand age, but overall stand NUE was roughly constant (∼ ∼150 g g−1 N) across the entire chronosequence.  相似文献   
108.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a polytopic membrane protein that functions as a Cl channel and consists of two membrane spanning domains (MSDs), two cytosolic nucleotide binding domains (NBDs), and a cytosolic regulatory domain. Cytosolic 70-kDa heat shock protein (Hsp70), and endoplasmic reticulum-localized calnexin are chaperones that facilitate CFTR biogenesis. Hsp70 functions in both the cotranslational folding and posttranslational degradation of CFTR. Yet, the mechanism for calnexin action in folding and quality control of CFTR is not clear. Investigation of this question revealed that calnexin is not essential for CFTR or CFTRΔF508 degradation. We identified a dependence on calnexin for proper assembly of CFTR's membrane spanning domains. Interestingly, efficient folding of NBD2 was also found to be dependent upon calnexin binding to CFTR. Furthermore, we identified folding defects caused by deletion of F508 that occurred before and after the calnexin-dependent association of MSD1 and MSD2. Early folding defects are evident upon translation of the NBD1 and R-domain and are sensed by the RMA-1 ubiquitin ligase complex.  相似文献   
109.
Municipal sewage effluents are complex mixtures of contaminants known to disrupt both immune and endocrine functions in aquatic organisms. The present study sought to determine the impacts of municipal effluent on the immune systems of juvenile rainbow trout (Oncorhynchus mykiss), by exposing specimens to low concentrations (0.01%, 0.1%, 1% or 10%) of sewage effluent for periods of 28 or 90 days. The soluble and insoluble fractions of the effluent were also studied to assess the contribution of fractions rich in microorganisms and particles on fish immune systems. To this end, the trout were also exposed to soluble and insoluble fractions of the effluent for a period of 28 days. Immunocompetence was assessed by the following three parameters: phagocytosis, natural cytotoxic cells (NCC) and blastogenesis of lymphocytes under mitogen stimulation. Fish exposed to the 1% sewage effluent concentration for 28 days had enhanced phagocytic activity; at 90 days, phagocytic activity was reduced. T and B lymphocyte proliferation in fish from both groups was similarly stimulated. Phagocytosis and NCC activities were influenced more by the insoluble fraction than the soluble fraction of the effluent. Conversely, mitogen-stimulated T lymphocyte proliferation was enhanced in cells of fish exposed to the soluble fraction of the effluents, with a dampening effect on the insoluble (particulate) fraction of the effluent. In conclusion, the effects of the effluent and its fractions were higher at the cellular-mediated immunity level than at the acquired immunity level. Immunotoxicity data on the soluble fraction of the effluent were more closely associated to data on the unfractionated effluent, but the contribution of the particulate fraction could not be completely ignored for phagocytosis and B lymphocyte proliferation.  相似文献   
110.
Cyr DM 《Cell》2008,133(6):945-947
Molecular chaperones such as heat shock protein 70 (Hsp70) are crucial for protein folding. Crystal structures of Hsp70 in a complex with the nucleotide exchange factor (NEF) Hsp110 reported in this issue of Cell (Polier et al., 2008) and in Molecular Cell (Schuermann et al., 2008) provide new insights into how NEF action specifies Hsp70 cellular function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号