首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3750篇
  免费   316篇
  国内免费   1篇
  4067篇
  2023年   16篇
  2022年   45篇
  2021年   66篇
  2020年   31篇
  2019年   41篇
  2018年   66篇
  2017年   53篇
  2016年   79篇
  2015年   162篇
  2014年   164篇
  2013年   236篇
  2012年   309篇
  2011年   291篇
  2010年   229篇
  2009年   175篇
  2008年   207篇
  2007年   230篇
  2006年   215篇
  2005年   214篇
  2004年   196篇
  2003年   196篇
  2002年   191篇
  2001年   45篇
  2000年   20篇
  1999年   48篇
  1998年   61篇
  1997年   34篇
  1996年   37篇
  1995年   32篇
  1994年   38篇
  1993年   36篇
  1992年   22篇
  1991年   30篇
  1990年   19篇
  1989年   20篇
  1988年   19篇
  1987年   12篇
  1986年   15篇
  1985年   9篇
  1984年   15篇
  1983年   12篇
  1982年   15篇
  1981年   18篇
  1980年   19篇
  1979年   9篇
  1978年   12篇
  1977年   8篇
  1975年   7篇
  1974年   9篇
  1973年   8篇
排序方式: 共有4067条查询结果,搜索用时 0 毫秒
51.
In addition to classical roles in calcium homeostasis and bone development, 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] inhibits the growth of several cancer types, including breast cancer. Although cellular effects of 1,25(OH)2D3 traditionally have been attributed to activation of a nuclear vitamin D receptor (VDR), a novel receptor for 1,25(OH)2D3 called 1,25D3-MARRS (membrane-associated, rapid response steroid-binding) protein was identified recently. The purpose of this study was to determine if the level of 1,25D3-MARRS expression modulates 1,25(OH)2D3 activity in breast cancer cells.Relative levels of 1,25D3-MARRS protein in MCF-7, MDA MB 231, and MCF-10A cells were estimated by real-time RT-PCR and Western blotting. To determine if 1,25D3-MARRS receptor was involved in the growth inhibitory effects of 1,25(OH)2D3 in MCF-7 cells, a ribozyme construct designed to knock down 1,25D3-MARRS mRNA was stably transfected into MCF-7 cells. MCF-7 clones in which 1,25D3-MARRS receptor expression was reduced showed increased sensitivity to 1,25(OH)2D3 ( IC50 56 ± 24 nM) compared to controls (319 ± 181 nM; P < 0.05). Reduction in 1,25D3-MARRS receptor lengthened the doubling time in transfectants treated with 1,25(OH)2D3. Knockdown of 1,25D3-MARRS receptor also increased the sensitivity of MCF-7 cells to the vitamin D analogs KH1060 and MC903, but not to unrelated agents (all-trans retinoic acid, paclitaxel, serum/glucose starvation, or the isoflavone, pomiferin). These results suggest that 1,25D3-MARRS receptor expression interferes with the growth inhibitory activity of 1,25(OH)2D3 in breast cancer cells, possibly through the nuclear VDR. Further research should examine the potential for pharmacological or natural agents that modify 1,25D3-MARRS expression or activity as anticancer agents.  相似文献   
52.
The heritable disorder ataxia telangiectasia (AT) is caused by mutations in the AT-mutated (ATM) gene with manifestations that include predisposition to lymphoproliferative cancers and hypersensitivity to ionizing radiation (IR). We investigated gene expression changes in response to IR in human lymphoblasts and fibroblasts from seven normal and seven AT-affected individuals. Both cell types displayed ATM-dependent gene expression changes after IR, with some responses shared and some responses varying with cell type and dose. Interestingly, after 5 Gy IR, lymphoblasts displayed ATM-independent responses not seen in the fibroblasts at this dose, which likely reflect signaling through ATM-related kinases, e.g., ATR, in the absence of ATM function.  相似文献   
53.
The response regulator AlgR is required for both alginate biosynthesis and type IV fimbria-mediated twitching motility in Pseudomonas aeruginosa. In this study, the roles of AlgR signal transduction and phosphorylation in twitching motility and biofilm formation were examined. The predicted phosphorylation site of AlgR (aspartate 54) and a second aspartate (aspartate 85) in the receiver domain of AlgR were mutated to asparagine, and mutant algR alleles were introduced into the chromosome of P. aeruginosa strains PAK and PAO1. Assays of these mutants demonstrated that aspartate 54 but not aspartate 85 of AlgR is required for twitching motility and biofilm initiation. However, strains expressing AlgR D85N were found to be hyperfimbriate, indicating that both aspartate 54 and aspartate 85 are involved in fimbrial biogenesis and function. algD mutants were observed to have wild-type twitching motility, indicating that AlgR control of twitching motility is not mediated via its role in the control of alginate biosynthesis. In vitro phosphorylation assays showed that AlgR D54N is not phosphorylated by the enteric histidine kinase CheA. These findings indicate that phosphorylation of AlgR most likely occurs at aspartate 54 and that aspartate 54 and aspartate 85 of AlgR are required for the control of the molecular events governing fimbrial biogenesis, twitching motility, and biofilm formation in P. aeruginosa.  相似文献   
54.
Ubiquitination is a widely studied regulatory modification involved in protein degradation, DNA damage repair, and the immune response. Ubiquitin is conjugated to a substrate lysine in an enzymatic cascade involving an E1 ubiquitin-activating enzyme, an E2 ubiquitin-conjugating enzyme, and an E3 ubiquitin ligase. Assays for ubiquitin conjugation include electrophoretic mobility shift assays and detection of epitope-tagged or radiolabeled ubiquitin, which are difficult to quantitate accurately and are not amenable to high-throughput screening. We have developed a colorimetric assay that quantifies ubiquitin conjugation by monitoring pyrophosphate released in the first enzymatic step in ubiquitin transfer, the ATP-dependent charging of the E1 enzyme. The assay is rapid, does not rely on radioactive labeling, and requires only a spectrophotometer for detection of pyrophosphate formation. We show that pyrophosphate production by E1 is dependent on ubiquitin transfer and describe how to optimize assay conditions to measure E1, E2, and E3 activity. The kinetics of polyubiquitin chain formation by Ubc13–Mms2 measured by this assay are similar to those determined by gel-based assays, indicating that the data produced by this method are comparable to methods that measure ubiquitin transfer directly. This assay is adaptable to high-throughput screening of ubiquitin and ubiquitin-like conjugating enzymes.  相似文献   
55.
Responses to innocuous stimuli often habituate with repeated stimulation, but the mechanisms involved in dishabituation are less well studied. Chan et al. (2010b) found that hermit crabs were quicker to perform an anti-predator withdrawal response in the presence of a short-duration white noise relative to a longer noise stimulus. In two experiments, we examined whether this effect could be explicable in terms of a non-associative learning process. We delivered repeated presentations of a simulated visual predator to hermit crabs, which initially caused the crabs to withdraw into their shells. After a number of trials, the visual stimulus lost the ability to elicit the withdrawal response. We then presented the crabs with an auditory stimulus prior to an additional presentation of the visual predator. In Experiment 1, the presentation of a 10-s, 89-dB SPL noise produced no significant dishabituation of the response. In Experiment 2 we increased the duration (50 s) and intensity (95 dB) of the noise, and found that the crabs recovered their withdrawal response to the visual predator. This finding illustrates dishabituation of an antipredator response and suggests two distinct processes—distraction and sensitization—are influenced by the same stimulus parameters, and interact to modulate the strength of the anti-predator response.  相似文献   
56.
57.
MHC (major histocompatibility complex) class I molecules bind intracellular virus-derived peptides in the endoplasmic reticulum (ER) and present them at the cell surface to cytotoxic T lymphocytes. Peptide-free class I molecules at the cell surface, however, could lead to aberrant T cell killing. Therefore, cells ensure that class I molecules bind high-affinity ligand peptides in the ER, and restrict the export of empty class I molecules to the Golgi apparatus. For both of these safeguard mechanisms, the MHC class I loading complex (which consists of the peptide transporter TAP, the chaperones tapasin and calreticulin, and the protein disulfide isomerase ERp57) plays a central role. This article reviews the actions of accessory proteins in the biogenesis of class I molecules, specifically the functions of the loading complex in high-affinity peptide binding and localization of class I molecules, and the known connections between these two regulatory mechanisms. It introduces new models for the mode of action of tapasin, the role of the class I loading complex in peptide editing, and the intracellular localization of class I molecules.  相似文献   
58.
59.
A cell line from Trichoplusia ni (TN-CL1) infected with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV-HPP) and a cell line from Helicoverpa zea (BCIRL-HZ-AM1) infected with the Helicoverpa zea single nucleopolyhedrovirus (HzSNPV/BrCL2) were subjected to ultraviolet-B (UV-B) irradiation at a predetermined level of exposure that would inactivate greater than 95% of the virus suspended in the liquid. The working hypothesis was that the homologous insect cells would utilize their inherent deoxyribonucleic acid (DNA) repair mechanism(s) to prevent, repair, or at least mitigate the damaging effects of UV-B light on viral DNA synthesis. We attempted to determine this by using infected cells that were subjected to UV-B irradiation at different postinoculation periods under two experimental conditions of exposure: (1) shielded, and (2) nonshielded. Of the two cell lines infected with their respective homologous viruses, the virus from TN-CL1 cells was the least sensitive to UV-B light because the extracellular virus (ECV) and occlusion body (OB) levels of virus-infected TN-CL1 cells were higher than those of the virus-infected BCIRL-HZ-AM1 cells. Production of ECV and OB from both cell lines was lower in the exposed, nonshielded treatment than in the exposed, shielded treatment. However, AcMNPV-HPP was produced in enough quantity to indicate that TN-CL1 might impart a level of protection to the virus against UV light.  相似文献   
60.
Serotonin and its receptors (HTRs) play critical roles in brain development and in the regulation of cognition, mood, and anxiety. HTRs are highly expressed in human prefrontal cortex and exert control over prefrontal excitability. The serotonin system is a key treatment target for several psychiatric disorders; however, the effectiveness of these drugs varies according to age. Despite strong evidence for developmental changes in prefrontal Htrs of rodents, the developmental regulation of HTR expression in human prefrontal cortex has not been examined. Using postmortem human prefrontal brain tissue from across postnatal life, we investigated the expression of key serotonin receptors with distinct inhibitory (HTR1A, HTR5A) and excitatory (HTR2A, HTR2C, HTR4, HTR6) effects on cortical neurons, including two receptors which appear to be expressed to a greater degree in inhibitory interneurons of cerebral cortex (HTR2C, HTR6). We found distinct developmental patterns of expression for each of these six HTRs, with profound changes in expression occurring early in postnatal development and also into adulthood. However, a collective look at these HTRs in terms of their likely neurophysiological effects and major cellular localization leads to a model that suggests developmental changes in expression of these individual HTRs may not perturb an overall balance between inhibitory and excitatory effects. Examining and understanding the healthy balance is critical to appreciate how abnormal expression of an individual HTR may create a window of vulnerability for the emergence of psychiatric illness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号